r"""

.. _quantum_natural_gradient:

Quantum natural gradient
========================

.. meta::
    :property="og:description": The quantum natural gradient method can achieve faster convergence for quantum machine
        learning problems by taking into account the intrinsic geometry of qubits.
    :property="og:image": https://pennylane.ai/qml/_images/qng_optimization.png

.. related::

   tutorial_backprop Quantum gradients with backpropagation
   tutorial_vqe_qng Accelerating VQE with quantum natural gradient

*Author: Josh Izaac — Posted: 11 October 2019. Last updated: 25 January 2021.*

This example demonstrates the quantum natural gradient optimization technique
for variational quantum circuits, originally proposed in
`Stokes et al. (2019) <https://arxiv.org/abs/1909.02108>`__.

Background
----------

The most successful class of quantum algorithms for use on near-term noisy quantum hardware
is the so-called variational quantum algorithm. As laid out in the
:ref:`Concepts section <glossary_variational_circuit>`, in variational quantum algorithms
a low-depth parametrized quantum circuit ansatz is chosen, and a problem-specific
observable measured. A classical optimization loop is then used to find
the set of quantum parameters that *minimize* a particular measurement expectation value
of the quantum device. Examples of such algorithms include the :doc:`variational quantum
eigensolver (VQE) <tutorial_vqe>`, the
`quantum approximate optimization algorithm (QAOA) <https://arxiv.org/abs/1411.4028>`__,
and :ref:`quantum neural networks (QNN) <quantum_neural_net>`.

Most recent demonstrations
of variational quantum algorithms have used gradient-free classical optimization
methods, such as the Nelder-Mead algorithm. However, the parameter-shift rule
(as implemented in PennyLane) allows the user to automatically compute
analytic gradients of quantum circuits. This opens up the possibility to train
quantum computing hardware using gradient descent---the same method used to train
deep learning models.
Though one caveat has surfaced with gradient descent --- how do we choose the optimal
step size for our variational quantum algorithms, to ensure successful and
efficient optimization?

The natural gradient
^^^^^^^^^^^^^^^^^^^^

In standard gradient descent, each optimization step is given by

.. math:: \theta_{t+1} = \theta_t -\eta \nabla \mathcal{L}(\theta),

where :math:`\mathcal{L}(\theta)` is the cost as a function of
the parameters :math:`\theta`, and :math:`\eta` is the learning rate
or step size. In essence, each optimization step calculates the
steepest descent direction around the local value of :math:`\theta_t`
in the parameter space, and updates :math:`\theta_t\rightarrow \theta_{t+1}`
by this vector.

The problem with the above approach is that each optimization step
is strongly connected to a *Euclidean geometry* on the parameter space.
The parametrization is not unique, and different parametrizations can distort
distances within the optimization landscape.

For example, consider the following cost function :math:`\mathcal{L}`, parametrized
using two different coordinate systems, :math:`(\theta_0, \theta_1)`, and
:math:`(\phi_0, \phi_1)`:

|

.. figure:: ../demonstrations/quantum_natural_gradient/qng7.png
    :align: center
    :width: 90%
    :target: javascript:void(0)

|

Performing gradient descent in the :math:`(\theta_0, \theta_1)` parameter
space, we are updating each parameter by the same Euclidean distance,
and not taking into account the fact that the cost function might vary at a different
rate with respect to each parameter.

Instead, if we perform a change of coordinate system (re-parametrization)
of the cost function, we might find a parameter space where variations in :math:`\mathcal{L}`
are similar across different parameters. This is the case with the new parametrization
:math:`(\phi_0, \phi_1)`; the cost function is unchanged,
but we now have a nicer geometry in which to perform gradient descent, and a more
informative stepsize. This leads to faster convergence, and can help avoid optimization
becoming stuck in local minima. For a more in-depth explanation,
including why the parameter space might not be best represented by a Euclidean space,
see `Yamamoto (2019) <https://arxiv.org/abs/1909.05074>`__.

However, what if we avoid gradient descent in the parameter space altogether?
If we instead consider the optimization problem as a
probability distribution of possible output values given an input
(i.e., `maximum likelihood estimation <https://en.wikipedia.org/wiki/Likelihood_function>`_),
a better approach is to perform the gradient descent in the *distribution space*, which is
dimensionless and invariant with respect to the parametrization. As a result,
each optimization step will always choose the optimum step-size for every
parameter, regardless of the parametrization.

In classical neural networks, the above process is known as
*natural gradient descent*, and was first introduced by
`Amari (1998) <https://www.mitpressjournals.org/doi/abs/10.1162/089976698300017746>`__.
The standard gradient descent is modified as follows:

.. math:: \theta_{t+1} = \theta_t - \eta F^{-1}\nabla \mathcal{L}(\theta),

where :math:`F` is the `Fisher information matrix <https://en.wikipedia.org/wiki/Fisher_information#Matrix_form>`__.
The Fisher information matrix acts as a metric tensor, transforming the
steepest descent in the Euclidean parameter space to the steepest descent in the
distribution space.

The quantum analog
^^^^^^^^^^^^^^^^^^

In a similar vein, it has been shown that the standard Euclidean geometry
is sub-optimal for optimization of quantum variational algorithms
`(Harrow and Napp, 2019) <https://arxiv.org/abs/1901.05374>`__.
The space of quantum states instead possesses a unique invariant metric
tensor known as the Fubini-Study metric tensor :math:`g_{ij}`, which can be used to
construct a quantum analog to natural gradient descent:

.. math:: \theta_{t+1} = \theta_t - \eta g^{+}(\theta_t)\nabla \mathcal{L}(\theta),

where :math:`g^{+}` refers to the pseudo-inverse.

.. note::

    It can be shown that the Fubini-Study metric tensor reduces
    to the Fisher information matrix in the classical limit.

    Furthermore, in the limit where :math:`\eta\rightarrow 0`,
    the dynamics of the system are equivalent to imaginary-time
    evolution within the variational subspace, as proposed in
    `McArdle et al. (2018) <https://arxiv.org/abs/1804.03023>`__.

"""

##############################################################################
# Block-diagonal metric tensor
# ----------------------------
#
# A block-diagonal approximation to the Fubini-Study metric tensor
# of a variational quantum circuit can be evaluated on quantum hardware.
#
# Consider a variational quantum circuit
#
# .. math::
#
#     U(\mathbf{\theta})|\psi_0\rangle = V_L(\theta_L) W_L V_{L-1}(\theta_{L-1}) W_{L-1}
#       \cdots V_{\ell}(\theta_{\ell}) W_{\ell} \cdots V_{0}(\theta_{0}) W_{0} |\psi_0\rangle
#
# where
#
# * :math:`|\psi_0\rangle` is the initial state,
# * :math:`W_\ell` are layers of non-parametrized quantum gates,
# * :math:`V_\ell(\theta_\ell)` are layers of parametrized quantum gates
#   with :math:`n_\ell` parameters :math:`\theta_\ell = \{\theta^{(\ell)}_0, \dots, \theta^{(\ell)}_n\}`.
#
# Further, assume all parametrized gates can be written in the form
# :math:`X(\theta^{(\ell)}_{i}) = e^{i\theta^{(\ell)}_{i} K^{(\ell)}_i}`,
# where :math:`K^{(\ell)}_i` is the *generator* of the parametrized operation.
#
# For each parametric layer :math:`\ell` in the variational quantum circuit
# the :math:`n_\ell\times n_\ell` block-diagonal submatrix
# of the Fubini-Study tensor :math:`g_{ij}^{(\ell)}` is calculated by:
#
# .. math::
#
#     g_{ij}^{(\ell)} = \langle \psi_{\ell-1} | K_i K_j | \psi_{\ell-1} \rangle
#     - \langle \psi_{\ell-1} | K_i | \psi_{\ell-1}\rangle
#     \langle \psi_{\ell-1} |K_j | \psi_{\ell-1}\rangle
#
# where
#
# .. math::
#
#     | \psi_{\ell-1}\rangle = V_{\ell-1}(\theta_{\ell-1}) W_{\ell-1} \cdots V_{0}(\theta_{0}) W_{0} |\psi_0\rangle.
#
# (that is, :math:`|\psi_{\ell-1}\rangle` is the quantum state prior to the application
# of parameterized layer :math:`\ell`), and we have :math:`K_i \equiv K_i^{(\ell)}` for brevity.
#
# Let's consider a small variational quantum circuit example coded in PennyLane:

import pennylane as qml
from pennylane import numpy as np

dev = qml.device("default.qubit", wires=3)


@qml.qnode(dev, interface="autograd")
def circuit(params):
    # |psi_0>: state preparation
    qml.RY(np.pi / 4, wires=0)
    qml.RY(np.pi / 3, wires=1)
    qml.RY(np.pi / 7, wires=2)

    # V0(theta0, theta1): Parametrized layer 0
    qml.RZ(params[0], wires=0)
    qml.RZ(params[1], wires=1)

    # W1: non-parametrized gates
    qml.CNOT(wires=[0, 1])
    qml.CNOT(wires=[1, 2])

    # V_1(theta2, theta3): Parametrized layer 1
    qml.RY(params[2], wires=1)
    qml.RX(params[3], wires=2)

    # W2: non-parametrized gates
    qml.CNOT(wires=[0, 1])
    qml.CNOT(wires=[1, 2])

    return qml.expval(qml.PauliY(0))


params = np.array([0.432, -0.123, 0.543, 0.233])

##############################################################################
# The above circuit consists of 4 parameters, with two distinct parametrized
# layers of 2 parameters each.
#
# .. figure:: ../demonstrations/quantum_natural_gradient/qng1.png
#     :align: center
#     :width: 90%
#     :target: javascript:void(0)
#
# |
#
# (Note that in this example, the first non-parametrized layer :math:`W_0`
# is simply the identity.) Since there are two layers, each with two parameters,
# the block-diagonal approximation consists of two
# :math:`2\times 2` matrices, :math:`g^{(0)}` and :math:`g^{(1)}`.
#
# .. figure:: ../demonstrations/quantum_natural_gradient/qng2.png
#     :align: center
#     :width: 30%
#     :target: javascript:void(0)
#
# To compute the first block-diagonal :math:`g^{(0)}`, we create subcircuits consisting
# of all gates prior to the layer, and observables corresponding to
# the *generators* of the gates in the layer:
#
# .. figure:: ../demonstrations/quantum_natural_gradient/qng3.png
#     :align: center
#     :width: 30%
#     :target: javascript:void(0)

g0 = np.zeros([2, 2])


def layer0_subcircuit(params):
    """This function contains all gates that
    precede parametrized layer 0"""
    qml.RY(np.pi / 4, wires=0)
    qml.RY(np.pi / 3, wires=1)
    qml.RY(np.pi / 7, wires=2)


##############################################################################
# We then post-process the measurement results in order to determine :math:`g^{(0)}`,
# as follows.
#
# .. figure:: ../demonstrations/quantum_natural_gradient/qng4.png
#     :align: center
#     :width: 50%
#     :target: javascript:void(0)
#
# We can see that the diagonal terms are simply given by the variance:


@qml.qnode(dev, interface="autograd")
def layer0_diag(params):
    layer0_subcircuit(params)
    return qml.var(qml.PauliZ(0)), qml.var(qml.PauliZ(1))


# calculate the diagonal terms
varK0, varK1 = layer0_diag(params)
g0[0, 0] = varK0 / 4
g0[1, 1] = varK1 / 4

##############################################################################
# The following two subcircuits are then used to calculate the
# off-diagonal covariance terms of :math:`g^{(0)}`:


@qml.qnode(dev, interface="autograd")
def layer0_off_diag_single(params):
    layer0_subcircuit(params)
    return qml.expval(qml.PauliZ(0)), qml.expval(qml.PauliZ(1))


@qml.qnode(dev, interface="autograd")
def layer0_off_diag_double(params):
    layer0_subcircuit(params)
    ZZ = np.kron(np.diag([1, -1]), np.diag([1, -1]))
    return qml.expval(qml.Hermitian(ZZ, wires=[0, 1]))


# calculate the off-diagonal terms
exK0, exK1 = layer0_off_diag_single(params)
exK0K1 = layer0_off_diag_double(params)

g0[0, 1] = (exK0K1 - exK0 * exK1) / 4
g0[1, 0] = (exK0K1 - exK0 * exK1) / 4

##############################################################################
# Note that, by definition, the block-diagonal matrices must be real and
# symmetric.
#
# We can repeat the above process to compute :math:`g^{(1)}`. The subcircuit
# required is given by
#
# .. figure:: ../demonstrations/quantum_natural_gradient/qng8.png
#     :align: center
#     :width: 50%
#     :target: javascript:void(0)

g1 = np.zeros([2, 2])


def layer1_subcircuit(params):
    """This function contains all gates that
    precede parametrized layer 1"""
    # |psi_0>: state preparation
    qml.RY(np.pi / 4, wires=0)
    qml.RY(np.pi / 3, wires=1)
    qml.RY(np.pi / 7, wires=2)

    # V0(theta0, theta1): Parametrized layer 0
    qml.RZ(params[0], wires=0)
    qml.RZ(params[1], wires=1)

    # W1: non-parametrized gates
    qml.CNOT(wires=[0, 1])
    qml.CNOT(wires=[1, 2])


##############################################################################
# Using this subcircuit, we can now generate the submatrix :math:`g^{(1)}`.
#
# .. figure:: ../demonstrations/quantum_natural_gradient/qng5.png
#     :align: center
#     :width: 50%
#     :target: javascript:void(0)


@qml.qnode(dev, interface="autograd")
def layer1_diag(params):
    layer1_subcircuit(params)
    return qml.var(qml.PauliY(1)), qml.var(qml.PauliX(2))


##############################################################################
# As previously, the diagonal terms are simply given by the variance,

varK0, varK1 = layer1_diag(params)
g1[0, 0] = varK0 / 4
g1[1, 1] = varK1 / 4


##############################################################################
# while the off-diagonal terms require covariance between the two
# observables to be computed.


@qml.qnode(dev, interface="autograd")
def layer1_off_diag_single(params):
    layer1_subcircuit(params)
    return qml.expval(qml.PauliY(1)), qml.expval(qml.PauliX(2))


@qml.qnode(dev, interface="autograd")
def layer1_off_diag_double(params):
    layer1_subcircuit(params)
    X = np.array([[0, 1], [1, 0]])
    Y = np.array([[0, -1j], [1j, 0]])
    YX = np.kron(Y, X)
    return qml.expval(qml.Hermitian(YX, wires=[1, 2]))


# calculate the off-diagonal terms
exK0, exK1 = layer1_off_diag_single(params)
exK0K1 = layer1_off_diag_double(params)

g1[0, 1] = (exK0K1 - exK0 * exK1) / 4
g1[1, 0] = g1[0, 1]


##############################################################################
# Putting this altogether, the block-diagonal approximation to the Fubini-Study
# metric tensor for this variational quantum circuit is
from scipy.linalg import block_diag

g = block_diag(g0, g1)
print(np.round(g, 8))


##############################################################################
# PennyLane contains a built-in function for computing the Fubini-Study metric
# tensor, :func:`~.pennylane.metric_tensor`, which
# we can use to verify this result:
print(np.round(qml.metric_tensor(circuit, approx="block-diag")(params), 8))

##############################################################################
# As opposed to our manual computation, which required 6 different quantum
# evaluations, the PennyLane Fubini-Study metric tensor implementation
# requires only 2 quantum evaluations, one per layer. This is done by
# automatically detecting the layer structure, and noting that every
# observable that must be measured commutes, allowing for simultaneous measurement.
#
# Therefore, by combining the quantum natural gradient optimizer with the analytic
# parameter-shift rule to optimize a variational circuit with :math:`d` parameters
# and :math:`L` parametrized layers, a total of :math:`2d+L` quantum evaluations
# are required per optimization step.
#
# Note that the :func:`~.pennylane.metric_tensor` function also supports computing the diagonal
# approximation to the metric tensor:
print(qml.metric_tensor(circuit, approx='diag')(params))

##############################################################################
# Furthermore, the returned metric tensor is **full differentiable**; include it
# in your cost function, and train or optimize its value!

##############################################################################
# Quantum natural gradient optimization
# -------------------------------------
#
# PennyLane provides an implementation of the quantum natural gradient
# optimizer, :class:`~.pennylane.QNGOptimizer`. Let's compare the optimization convergence
# of the QNG Optimizer and the :class:`~.pennylane.GradientDescentOptimizer` for the simple variational
# circuit above.

steps = 200
init_params = np.array([0.432, -0.123, 0.543, 0.233], requires_grad=True)

##############################################################################
# Performing vanilla gradient descent:

gd_cost = []
opt = qml.GradientDescentOptimizer(0.01)

theta = init_params
for _ in range(steps):
    theta = opt.step(circuit, theta)
    gd_cost.append(circuit(theta))

##############################################################################
# Performing quantum natural gradient descent:

qng_cost = []
opt = qml.QNGOptimizer(0.01)

theta = init_params
for _ in range(steps):
    theta = opt.step(circuit, theta)
    qng_cost.append(circuit(theta))


##############################################################################
# Plotting the cost vs optimization step for both optimization strategies:
from matplotlib import pyplot as plt

plt.style.use("seaborn")
plt.plot(gd_cost, "b", label="Vanilla gradient descent")
plt.plot(qng_cost, "g", label="Quantum natural gradient descent")

plt.ylabel("Cost function value")
plt.xlabel("Optimization steps")
plt.legend()
plt.show()

##############################################################################
# References
# ----------
#
# 1. Shun-Ichi Amari. "Natural gradient works efficiently in learning."
#    `Neural computation 10.2,  251-276 <https://www.mitpressjournals.org/doi/abs/10.1162/089976698300017746>`__, 1998.
#
# 2. James Stokes, Josh Izaac, Nathan Killoran, Giuseppe Carleo.
#    "Quantum Natural Gradient." `arXiv:1909.02108 <https://arxiv.org/abs/1909.02108>`__, 2019.
#
# 3. Aram Harrow and John Napp. "Low-depth gradient measurements can improve
#    convergence in variational hybrid quantum-classical algorithms."
#    `arXiv:1901.05374 <https://arxiv.org/abs/1901.05374>`__, 2019.
#
# 4. Naoki Yamamoto. "On the natural gradient for variational quantum eigensolver."
#    `arXiv:1909.05074 <https://arxiv.org/abs/1909.05074>`__, 2019.
#
#
# About the author
# ----------------
# .. include:: ../_static/authors/josh_izaac.txt