Quantum transfer learning

Author: PennyLane dev team. Last updated: 28 Jan 2021.

In this tutorial we apply a machine learning method, known as transfer learning, to an image classifier based on a hybrid classical-quantum network.

This example follows the general structure of the PyTorch tutorial on transfer learning by Sasank Chilamkurthy, with the crucial difference of using a quantum circuit to perform the final classification task.

More details on this topic can be found in the research paper [1] (Mari et al. (2019)).

Introduction

Transfer learning is a well-established technique for training artificial neural networks (see e.g., Ref. [2]), which is based on the general intuition that if a pre-trained network is good at solving a given problem, then, with just a bit of additional training, it can be used to also solve a different but related problem.

As discussed in Ref. [1], this idea can be formalized in terms of two abstract networks \(A\) and \(B\), independently from their quantum or classical physical nature.


transfer_general

As sketched in the above figure, one can give the following general definition of the transfer learning method:

  1. Take a network \(A\) that has been pre-trained on a dataset \(D_A\) and for a given task \(T_A\).
  2. Remove some of the final layers. In this way, the resulting truncated network \(A'\) can be used as a feature extractor.
  3. Connect a new trainable network \(B\) at the end of the pre-trained network \(A'\).
  4. Keep the weights of \(A'\) constant, and train the final block \(B\) with a new dataset \(D_B\) and/or for a new task of interest \(T_B\).

When dealing with hybrid systems, depending on the physical nature (classical or quantum) of the networks \(A\) and \(B\), one can have different implementations of transfer learning as

summarized in following table:


Network A Network B Transfer learning scheme
Classical Classical CC - Standard classical method. See e.g., Ref. [2].
Classical Quantum CQ - Hybrid model presented in this tutorial.
Quantum Classical QC - Model studied in Ref. [1].
Quantum Quantum QQ - Model studied in Ref. [1].

Classical-to-quantum transfer learning

We focus on the CQ transfer learning scheme discussed in the previous section and we give a specific example.

  1. As pre-trained network \(A\) we use ResNet18, a deep residual neural network introduced by Microsoft in Ref. [3], which is pre-trained on the ImageNet dataset.
  2. After removing its final layer we obtain \(A'\), a pre-processing block which maps any input high-resolution image into 512 abstract features.
  3. Such features are classified by a 4-qubit “dressed quantum circuit” \(B\), i.e., a variational quantum circuit sandwiched between two classical layers.
  4. The hybrid model is trained, keeping \(A'\) constant, on the Hymenoptera dataset (a small subclass of ImageNet) containing images of ants and bees.

A graphical representation of the full data processing pipeline is given in the figure below.

transfer_c2q

General setup

Note

To use the PyTorch interface in PennyLane, you must first install PyTorch.

In addition to PennyLane, we will also need some standard PyTorch libraries and the plotting library matplotlib.

# Some parts of this code are based on the Python script:
# https://github.com/pytorch/tutorials/blob/master/beginner_source/transfer_learning_tutorial.py
# License: BSD

import time
import os
import copy

# PyTorch
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import torchvision
from torchvision import datasets, transforms

# Pennylane
import pennylane as qml
from pennylane import numpy as np

torch.manual_seed(42)
np.random.seed(42)

# Plotting
import matplotlib.pyplot as plt

# OpenMP: number of parallel threads.
os.environ["OMP_NUM_THREADS"] = "1"

Setting of the main hyper-parameters of the model

Note

To reproduce the results of Ref. [1], num_epochs should be set to 30 which may take a long time. We suggest to first try with num_epochs=1 and, if everything runs smoothly, increase it to a larger value.

n_qubits = 4                # Number of qubits
step = 0.0004               # Learning rate
batch_size = 4              # Number of samples for each training step
num_epochs = 3              # Number of training epochs
q_depth = 6                 # Depth of the quantum circuit (number of variational layers)
gamma_lr_scheduler = 0.1    # Learning rate reduction applied every 10 epochs.
q_delta = 0.01              # Initial spread of random quantum weights
start_time = time.time()    # Start of the computation timer

We initialize a PennyLane device with a default.qubit backend.

dev = qml.device("default.qubit", wires=n_qubits)

We configure PyTorch to use CUDA only if available. Otherwise the CPU is used.

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

Dataset loading

Note

The dataset containing images of ants and bees can be downloaded here and should be extracted in the subfolder ../_data/hymenoptera_data.

This is a very small dataset (roughly 250 images), too small for training from scratch a classical or quantum model, however it is enough when using transfer learning approach.

The PyTorch packages torchvision and torch.utils.data are used for loading the dataset and performing standard preliminary image operations: resize, center, crop, normalize, etc.

data_transforms = {
    "train": transforms.Compose(
        [
            # transforms.RandomResizedCrop(224),     # uncomment for data augmentation
            # transforms.RandomHorizontalFlip(),     # uncomment for data augmentation
            transforms.Resize(256),
            transforms.CenterCrop(224),
            transforms.ToTensor(),
            # Normalize input channels using mean values and standard deviations of ImageNet.
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
        ]
    ),
    "val": transforms.Compose(
        [
            transforms.Resize(256),
            transforms.CenterCrop(224),
            transforms.ToTensor(),
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
        ]
    ),
}

data_dir = "../_data/hymenoptera_data"
image_datasets = {
    x if x == "train" else "validation": datasets.ImageFolder(
        os.path.join(data_dir, x), data_transforms[x]
    )
    for x in ["train", "val"]
}
dataset_sizes = {x: len(image_datasets[x]) for x in ["train", "validation"]}
class_names = image_datasets["train"].classes

# Initialize dataloader
dataloaders = {
    x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size, shuffle=True)
    for x in ["train", "validation"]
}

# function to plot images
def imshow(inp, title=None):
    """Display image from tensor."""
    inp = inp.numpy().transpose((1, 2, 0))
    # Inverse of the initial normalization operation.
    mean = np.array([0.485, 0.456, 0.406])
    std = np.array([0.229, 0.224, 0.225])
    inp = std * inp + mean
    inp = np.clip(inp, 0, 1)
    plt.imshow(inp)
    if title is not None:
        plt.title(title)

Let us show a batch of the test data, just to have an idea of the classification problem.

# Get a batch of training data
inputs, classes = next(iter(dataloaders["validation"]))

# Make a grid from batch
out = torchvision.utils.make_grid(inputs)

imshow(out, title=[class_names[x] for x in classes])

dataloaders = {
    x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size, shuffle=True)
    for x in ["train", "validation"]
}
['bees', 'ants', 'bees', 'bees']

Variational quantum circuit

We first define some quantum layers that will compose the quantum circuit.

def H_layer(nqubits):
    """Layer of single-qubit Hadamard gates.
    """
    for idx in range(nqubits):
        qml.Hadamard(wires=idx)


def RY_layer(w):
    """Layer of parametrized qubit rotations around the y axis.
    """
    for idx, element in enumerate(w):
        qml.RY(element, wires=idx)


def entangling_layer(nqubits):
    """Layer of CNOTs followed by another shifted layer of CNOT.
    """
    # In other words it should apply something like :
    # CNOT  CNOT  CNOT  CNOT...  CNOT
    #   CNOT  CNOT  CNOT...  CNOT
    for i in range(0, nqubits - 1, 2):  # Loop over even indices: i=0,2,...N-2
        qml.CNOT(wires=[i, i + 1])
    for i in range(1, nqubits - 1, 2):  # Loop over odd indices:  i=1,3,...N-3
        qml.CNOT(wires=[i, i + 1])

Now we define the quantum circuit through the PennyLane qnode decorator .

The structure is that of a typical variational quantum circuit:

  • Embedding layer: All qubits are first initialized in a balanced superposition of up and down states, then they are rotated according to the input parameters (local embedding).
  • Variational layers: A sequence of trainable rotation layers and constant entangling layers is applied.
  • Measurement layer: For each qubit, the local expectation value of the \(Z\) operator is measured. This produces a classical output vector, suitable for additional post-processing.
@qml.qnode(dev, interface="torch")
def quantum_net(q_input_features, q_weights_flat):
    """
    The variational quantum circuit.
    """

    # Reshape weights
    q_weights = q_weights_flat.reshape(q_depth, n_qubits)

    # Start from state |+> , unbiased w.r.t. |0> and |1>
    H_layer(n_qubits)

    # Embed features in the quantum node
    RY_layer(q_input_features)

    # Sequence of trainable variational layers
    for k in range(q_depth):
        entangling_layer(n_qubits)
        RY_layer(q_weights[k])

    # Expectation values in the Z basis
    exp_vals = [qml.expval(qml.PauliZ(position)) for position in range(n_qubits)]
    return tuple(exp_vals)

Dressed quantum circuit

We can now define a custom torch.nn.Module representing a dressed quantum circuit.

This is a concatenation of:

  • A classical pre-processing layer (nn.Linear).
  • A classical activation function (torch.tanh).
  • A constant np.pi/2.0 scaling.
  • The previously defined quantum circuit (quantum_net).
  • A classical post-processing layer (nn.Linear).

The input of the module is a batch of vectors with 512 real parameters (features) and the output is a batch of vectors with two real outputs (associated with the two classes of images: ants and bees).

class DressedQuantumNet(nn.Module):
    """
    Torch module implementing the *dressed* quantum net.
    """

    def __init__(self):
        """
        Definition of the *dressed* layout.
        """

        super().__init__()
        self.pre_net = nn.Linear(512, n_qubits)
        self.q_params = nn.Parameter(q_delta * torch.randn(q_depth * n_qubits))
        self.post_net = nn.Linear(n_qubits, 2)

    def forward(self, input_features):
        """
        Defining how tensors are supposed to move through the *dressed* quantum
        net.
        """

        # obtain the input features for the quantum circuit
        # by reducing the feature dimension from 512 to 4
        pre_out = self.pre_net(input_features)
        q_in = torch.tanh(pre_out) * np.pi / 2.0

        # Apply the quantum circuit to each element of the batch and append to q_out
        q_out = torch.Tensor(0, n_qubits)
        q_out = q_out.to(device)
        for elem in q_in:
            q_out_elem = quantum_net(elem, self.q_params).float().unsqueeze(0)
            q_out = torch.cat((q_out, q_out_elem))

        # return the two-dimensional prediction from the postprocessing layer
        return self.post_net(q_out)

Hybrid classical-quantum model

We are finally ready to build our full hybrid classical-quantum network. We follow the transfer learning approach:

  1. First load the classical pre-trained network ResNet18 from the torchvision.models zoo.
  2. Freeze all the weights since they should not be trained.
  3. Replace the last fully connected layer with our trainable dressed quantum circuit (DressedQuantumNet).

Note

The ResNet18 model is automatically downloaded by PyTorch and it may take several minutes (only the first time).

model_hybrid = torchvision.models.resnet18(pretrained=True)

for param in model_hybrid.parameters():
    param.requires_grad = False


# Notice that model_hybrid.fc is the last layer of ResNet18
model_hybrid.fc = DressedQuantumNet()

# Use CUDA or CPU according to the "device" object.
model_hybrid = model_hybrid.to(device)

Out:

Downloading: "https://download.pytorch.org/models/resnet18-f37072fd.pth" to /home/circleci/.cache/torch/hub/checkpoints/resnet18-f37072fd.pth

  0%|          | 0.00/44.7M [00:00<?, ?B/s]
 44%|####4     | 19.8M/44.7M [00:00<00:00, 207MB/s]
 88%|########8 | 39.5M/44.7M [00:00<00:00, 173MB/s]
100%|##########| 44.7M/44.7M [00:00<00:00, 176MB/s]

Training and results

Before training the network we need to specify the loss function.

We use, as usual in classification problem, the cross-entropy which is directly available within torch.nn.

criterion = nn.CrossEntropyLoss()

We also initialize the Adam optimizer which is called at each training step in order to update the weights of the model.

optimizer_hybrid = optim.Adam(model_hybrid.fc.parameters(), lr=step)

We schedule to reduce the learning rate by a factor of gamma_lr_scheduler every 10 epochs.

exp_lr_scheduler = lr_scheduler.StepLR(
    optimizer_hybrid, step_size=10, gamma=gamma_lr_scheduler
)

What follows is a training function that will be called later. This function should return a trained model that can be used to make predictions (classifications).

def train_model(model, criterion, optimizer, scheduler, num_epochs):
    since = time.time()
    best_model_wts = copy.deepcopy(model.state_dict())
    best_acc = 0.0
    best_loss = 10000.0  # Large arbitrary number
    best_acc_train = 0.0
    best_loss_train = 10000.0  # Large arbitrary number
    print("Training started:")

    for epoch in range(num_epochs):

        # Each epoch has a training and validation phase
        for phase in ["train", "validation"]:
            if phase == "train":
                # Set model to training mode
                model.train()
            else:
                # Set model to evaluate mode
                model.eval()
            running_loss = 0.0
            running_corrects = 0

            # Iterate over data.
            n_batches = dataset_sizes[phase] // batch_size
            it = 0
            for inputs, labels in dataloaders[phase]:
                since_batch = time.time()
                batch_size_ = len(inputs)
                inputs = inputs.to(device)
                labels = labels.to(device)
                optimizer.zero_grad()

                # Track/compute gradient and make an optimization step only when training
                with torch.set_grad_enabled(phase == "train"):
                    outputs = model(inputs)
                    _, preds = torch.max(outputs, 1)
                    loss = criterion(outputs, labels)
                    if phase == "train":
                        loss.backward()
                        optimizer.step()

                # Print iteration results
                running_loss += loss.item() * batch_size_
                batch_corrects = torch.sum(preds == labels.data).item()
                running_corrects += batch_corrects
                print(
                    "Phase: {} Epoch: {}/{} Iter: {}/{} Batch time: {:.4f}".format(
                        phase,
                        epoch + 1,
                        num_epochs,
                        it + 1,
                        n_batches + 1,
                        time.time() - since_batch,
                    ),
                    end="\r",
                    flush=True,
                )
                it += 1

            # Print epoch results
            epoch_loss = running_loss / dataset_sizes[phase]
            epoch_acc = running_corrects / dataset_sizes[phase]
            print(
                "Phase: {} Epoch: {}/{} Loss: {:.4f} Acc: {:.4f}        ".format(
                    "train" if phase == "train" else "validation  ",
                    epoch + 1,
                    num_epochs,
                    epoch_loss,
                    epoch_acc,
                )
            )

            # Check if this is the best model wrt previous epochs
            if phase == "validation" and epoch_acc > best_acc:
                best_acc = epoch_acc
                best_model_wts = copy.deepcopy(model.state_dict())
            if phase == "validation" and epoch_loss < best_loss:
                best_loss = epoch_loss
            if phase == "train" and epoch_acc > best_acc_train:
                best_acc_train = epoch_acc
            if phase == "train" and epoch_loss < best_loss_train:
                best_loss_train = epoch_loss

            # Update learning rate
            if phase == "train":
                scheduler.step()

    # Print final results
    model.load_state_dict(best_model_wts)
    time_elapsed = time.time() - since
    print(
        "Training completed in {:.0f}m {:.0f}s".format(time_elapsed // 60, time_elapsed % 60)
    )
    print("Best test loss: {:.4f} | Best test accuracy: {:.4f}".format(best_loss, best_acc))
    return model

We are ready to perform the actual training process.

model_hybrid = train_model(
    model_hybrid, criterion, optimizer_hybrid, exp_lr_scheduler, num_epochs=num_epochs
)

Out:

Training started:
Phase: train Epoch: 1/3 Iter: 1/62 Batch time: 0.5898
Phase: train Epoch: 1/3 Iter: 2/62 Batch time: 0.4111
Phase: train Epoch: 1/3 Iter: 3/62 Batch time: 0.3083
Phase: train Epoch: 1/3 Iter: 4/62 Batch time: 0.3472
Phase: train Epoch: 1/3 Iter: 5/62 Batch time: 0.3171
Phase: train Epoch: 1/3 Iter: 6/62 Batch time: 0.3178
Phase: train Epoch: 1/3 Iter: 7/62 Batch time: 0.3151
Phase: train Epoch: 1/3 Iter: 8/62 Batch time: 0.2954
Phase: train Epoch: 1/3 Iter: 9/62 Batch time: 0.3079
Phase: train Epoch: 1/3 Iter: 10/62 Batch time: 0.3899
Phase: train Epoch: 1/3 Iter: 11/62 Batch time: 0.2775
Phase: train Epoch: 1/3 Iter: 12/62 Batch time: 0.3096
Phase: train Epoch: 1/3 Iter: 13/62 Batch time: 0.3115
Phase: train Epoch: 1/3 Iter: 14/62 Batch time: 0.3101
Phase: train Epoch: 1/3 Iter: 15/62 Batch time: 0.2694
Phase: train Epoch: 1/3 Iter: 16/62 Batch time: 0.3418
Phase: train Epoch: 1/3 Iter: 17/62 Batch time: 0.3141
Phase: train Epoch: 1/3 Iter: 18/62 Batch time: 0.3053
Phase: train Epoch: 1/3 Iter: 19/62 Batch time: 0.2784
Phase: train Epoch: 1/3 Iter: 20/62 Batch time: 0.3914
Phase: train Epoch: 1/3 Iter: 21/62 Batch time: 0.3477
Phase: train Epoch: 1/3 Iter: 22/62 Batch time: 0.3088
Phase: train Epoch: 1/3 Iter: 23/62 Batch time: 0.2835
Phase: train Epoch: 1/3 Iter: 24/62 Batch time: 0.3612
Phase: train Epoch: 1/3 Iter: 25/62 Batch time: 0.2815
Phase: train Epoch: 1/3 Iter: 26/62 Batch time: 0.3217
Phase: train Epoch: 1/3 Iter: 27/62 Batch time: 0.3118
Phase: train Epoch: 1/3 Iter: 28/62 Batch time: 0.2774
Phase: train Epoch: 1/3 Iter: 29/62 Batch time: 0.3530
Phase: train Epoch: 1/3 Iter: 30/62 Batch time: 0.4029
Phase: train Epoch: 1/3 Iter: 31/62 Batch time: 0.3292
Phase: train Epoch: 1/3 Iter: 32/62 Batch time: 0.3082
Phase: train Epoch: 1/3 Iter: 33/62 Batch time: 0.3047
Phase: train Epoch: 1/3 Iter: 34/62 Batch time: 0.2819
Phase: train Epoch: 1/3 Iter: 35/62 Batch time: 0.2955
Phase: train Epoch: 1/3 Iter: 36/62 Batch time: 0.3900
Phase: train Epoch: 1/3 Iter: 37/62 Batch time: 0.3264
Phase: train Epoch: 1/3 Iter: 38/62 Batch time: 0.3223
Phase: train Epoch: 1/3 Iter: 39/62 Batch time: 0.2945
Phase: train Epoch: 1/3 Iter: 40/62 Batch time: 0.4057
Phase: train Epoch: 1/3 Iter: 41/62 Batch time: 0.3264
Phase: train Epoch: 1/3 Iter: 42/62 Batch time: 0.3321
Phase: train Epoch: 1/3 Iter: 43/62 Batch time: 0.4007
Phase: train Epoch: 1/3 Iter: 44/62 Batch time: 0.2942
Phase: train Epoch: 1/3 Iter: 45/62 Batch time: 0.2861
Phase: train Epoch: 1/3 Iter: 46/62 Batch time: 0.3654
Phase: train Epoch: 1/3 Iter: 47/62 Batch time: 0.3188
Phase: train Epoch: 1/3 Iter: 48/62 Batch time: 0.3156
Phase: train Epoch: 1/3 Iter: 49/62 Batch time: 0.2719
Phase: train Epoch: 1/3 Iter: 50/62 Batch time: 0.3228
Phase: train Epoch: 1/3 Iter: 51/62 Batch time: 0.5210
Phase: train Epoch: 1/3 Iter: 52/62 Batch time: 0.3114
Phase: train Epoch: 1/3 Iter: 53/62 Batch time: 0.5292
Phase: train Epoch: 1/3 Iter: 54/62 Batch time: 0.3113
Phase: train Epoch: 1/3 Iter: 55/62 Batch time: 0.3320
Phase: train Epoch: 1/3 Iter: 56/62 Batch time: 0.3453
Phase: train Epoch: 1/3 Iter: 57/62 Batch time: 0.3751
Phase: train Epoch: 1/3 Iter: 58/62 Batch time: 0.3829
Phase: train Epoch: 1/3 Iter: 59/62 Batch time: 0.3754
Phase: train Epoch: 1/3 Iter: 60/62 Batch time: 0.3235
Phase: train Epoch: 1/3 Iter: 61/62 Batch time: 0.3012
Phase: train Epoch: 1/3 Loss: 0.6993 Acc: 0.5246
Phase: validation Epoch: 1/3 Iter: 1/39 Batch time: 0.2190
Phase: validation Epoch: 1/3 Iter: 2/39 Batch time: 0.2336
Phase: validation Epoch: 1/3 Iter: 3/39 Batch time: 0.2379
Phase: validation Epoch: 1/3 Iter: 4/39 Batch time: 0.1570
Phase: validation Epoch: 1/3 Iter: 5/39 Batch time: 0.2385
Phase: validation Epoch: 1/3 Iter: 6/39 Batch time: 0.2602
Phase: validation Epoch: 1/3 Iter: 7/39 Batch time: 0.2374
Phase: validation Epoch: 1/3 Iter: 8/39 Batch time: 0.2376
Phase: validation Epoch: 1/3 Iter: 9/39 Batch time: 0.2358
Phase: validation Epoch: 1/3 Iter: 10/39 Batch time: 0.2125
Phase: validation Epoch: 1/3 Iter: 11/39 Batch time: 0.2333
Phase: validation Epoch: 1/3 Iter: 12/39 Batch time: 0.2367
Phase: validation Epoch: 1/3 Iter: 13/39 Batch time: 0.3388
Phase: validation Epoch: 1/3 Iter: 14/39 Batch time: 0.2360
Phase: validation Epoch: 1/3 Iter: 15/39 Batch time: 0.2389
Phase: validation Epoch: 1/3 Iter: 16/39 Batch time: 0.1536
Phase: validation Epoch: 1/3 Iter: 17/39 Batch time: 0.3167
Phase: validation Epoch: 1/3 Iter: 18/39 Batch time: 0.2778
Phase: validation Epoch: 1/3 Iter: 19/39 Batch time: 0.2368
Phase: validation Epoch: 1/3 Iter: 20/39 Batch time: 0.2303
Phase: validation Epoch: 1/3 Iter: 21/39 Batch time: 0.2346
Phase: validation Epoch: 1/3 Iter: 22/39 Batch time: 0.2344
Phase: validation Epoch: 1/3 Iter: 23/39 Batch time: 0.2345
Phase: validation Epoch: 1/3 Iter: 24/39 Batch time: 0.2349
Phase: validation Epoch: 1/3 Iter: 25/39 Batch time: 0.2402
Phase: validation Epoch: 1/3 Iter: 26/39 Batch time: 0.2383
Phase: validation Epoch: 1/3 Iter: 27/39 Batch time: 0.2378
Phase: validation Epoch: 1/3 Iter: 28/39 Batch time: 0.2526
Phase: validation Epoch: 1/3 Iter: 29/39 Batch time: 0.2741
Phase: validation Epoch: 1/3 Iter: 30/39 Batch time: 0.2327
Phase: validation Epoch: 1/3 Iter: 31/39 Batch time: 0.2421
Phase: validation Epoch: 1/3 Iter: 32/39 Batch time: 0.2327
Phase: validation Epoch: 1/3 Iter: 33/39 Batch time: 0.2399
Phase: validation Epoch: 1/3 Iter: 34/39 Batch time: 0.2376
Phase: validation Epoch: 1/3 Iter: 35/39 Batch time: 0.1566
Phase: validation Epoch: 1/3 Iter: 36/39 Batch time: 0.2363
Phase: validation Epoch: 1/3 Iter: 37/39 Batch time: 0.2384
Phase: validation Epoch: 1/3 Iter: 38/39 Batch time: 0.1525
Phase: validation Epoch: 1/3 Iter: 39/39 Batch time: 0.1224
Phase: validation   Epoch: 1/3 Loss: 0.6432 Acc: 0.6536
Phase: train Epoch: 2/3 Iter: 1/62 Batch time: 0.3052
Phase: train Epoch: 2/3 Iter: 2/62 Batch time: 0.2773
Phase: train Epoch: 2/3 Iter: 3/62 Batch time: 0.3595
Phase: train Epoch: 2/3 Iter: 4/62 Batch time: 0.3415
Phase: train Epoch: 2/3 Iter: 5/62 Batch time: 0.3474
Phase: train Epoch: 2/3 Iter: 6/62 Batch time: 0.3708
Phase: train Epoch: 2/3 Iter: 7/62 Batch time: 0.3516
Phase: train Epoch: 2/3 Iter: 8/62 Batch time: 0.2801
Phase: train Epoch: 2/3 Iter: 9/62 Batch time: 0.3042
Phase: train Epoch: 2/3 Iter: 10/62 Batch time: 0.3110
Phase: train Epoch: 2/3 Iter: 11/62 Batch time: 0.3408
Phase: train Epoch: 2/3 Iter: 12/62 Batch time: 0.3104
Phase: train Epoch: 2/3 Iter: 13/62 Batch time: 0.3463
Phase: train Epoch: 2/3 Iter: 14/62 Batch time: 0.2921
Phase: train Epoch: 2/3 Iter: 15/62 Batch time: 0.3397
Phase: train Epoch: 2/3 Iter: 16/62 Batch time: 0.3202
Phase: train Epoch: 2/3 Iter: 17/62 Batch time: 0.3751
Phase: train Epoch: 2/3 Iter: 18/62 Batch time: 0.3800
Phase: train Epoch: 2/3 Iter: 19/62 Batch time: 0.3047
Phase: train Epoch: 2/3 Iter: 20/62 Batch time: 0.3233
Phase: train Epoch: 2/3 Iter: 21/62 Batch time: 0.3188
Phase: train Epoch: 2/3 Iter: 22/62 Batch time: 0.3244
Phase: train Epoch: 2/3 Iter: 23/62 Batch time: 0.3131
Phase: train Epoch: 2/3 Iter: 24/62 Batch time: 0.2791
Phase: train Epoch: 2/3 Iter: 25/62 Batch time: 0.3078
Phase: train Epoch: 2/3 Iter: 26/62 Batch time: 0.3303
Phase: train Epoch: 2/3 Iter: 27/62 Batch time: 0.3194
Phase: train Epoch: 2/3 Iter: 28/62 Batch time: 0.3107
Phase: train Epoch: 2/3 Iter: 29/62 Batch time: 0.2804
Phase: train Epoch: 2/3 Iter: 30/62 Batch time: 0.3053
Phase: train Epoch: 2/3 Iter: 31/62 Batch time: 0.3121
Phase: train Epoch: 2/3 Iter: 32/62 Batch time: 0.3360
Phase: train Epoch: 2/3 Iter: 33/62 Batch time: 0.3030
Phase: train Epoch: 2/3 Iter: 34/62 Batch time: 0.2804
Phase: train Epoch: 2/3 Iter: 35/62 Batch time: 0.3111
Phase: train Epoch: 2/3 Iter: 36/62 Batch time: 0.3066
Phase: train Epoch: 2/3 Iter: 37/62 Batch time: 0.3062
Phase: train Epoch: 2/3 Iter: 38/62 Batch time: 0.3122
Phase: train Epoch: 2/3 Iter: 39/62 Batch time: 0.3080
Phase: train Epoch: 2/3 Iter: 40/62 Batch time: 0.3604
Phase: train Epoch: 2/3 Iter: 41/62 Batch time: 0.3632
Phase: train Epoch: 2/3 Iter: 42/62 Batch time: 0.3647
Phase: train Epoch: 2/3 Iter: 43/62 Batch time: 0.3609
Phase: train Epoch: 2/3 Iter: 44/62 Batch time: 0.3096
Phase: train Epoch: 2/3 Iter: 45/62 Batch time: 0.3427
Phase: train Epoch: 2/3 Iter: 46/62 Batch time: 0.3631
Phase: train Epoch: 2/3 Iter: 47/62 Batch time: 0.2735
Phase: train Epoch: 2/3 Iter: 48/62 Batch time: 0.3915
Phase: train Epoch: 2/3 Iter: 49/62 Batch time: 0.3391
Phase: train Epoch: 2/3 Iter: 50/62 Batch time: 0.2790
Phase: train Epoch: 2/3 Iter: 51/62 Batch time: 0.3840
Phase: train Epoch: 2/3 Iter: 52/62 Batch time: 0.2856
Phase: train Epoch: 2/3 Iter: 53/62 Batch time: 0.3080
Phase: train Epoch: 2/3 Iter: 54/62 Batch time: 0.3269
Phase: train Epoch: 2/3 Iter: 55/62 Batch time: 0.3165
Phase: train Epoch: 2/3 Iter: 56/62 Batch time: 0.3188
Phase: train Epoch: 2/3 Iter: 57/62 Batch time: 0.3110
Phase: train Epoch: 2/3 Iter: 58/62 Batch time: 0.3812
Phase: train Epoch: 2/3 Iter: 59/62 Batch time: 0.3230
Phase: train Epoch: 2/3 Iter: 60/62 Batch time: 0.3120
Phase: train Epoch: 2/3 Iter: 61/62 Batch time: 0.3196
Phase: train Epoch: 2/3 Loss: 0.6141 Acc: 0.7049
Phase: validation Epoch: 2/3 Iter: 1/39 Batch time: 0.2644
Phase: validation Epoch: 2/3 Iter: 2/39 Batch time: 0.2315
Phase: validation Epoch: 2/3 Iter: 3/39 Batch time: 0.2445
Phase: validation Epoch: 2/3 Iter: 4/39 Batch time: 0.2460
Phase: validation Epoch: 2/3 Iter: 5/39 Batch time: 0.2364
Phase: validation Epoch: 2/3 Iter: 6/39 Batch time: 0.3212
Phase: validation Epoch: 2/3 Iter: 7/39 Batch time: 0.2416
Phase: validation Epoch: 2/3 Iter: 8/39 Batch time: 0.2398
Phase: validation Epoch: 2/3 Iter: 9/39 Batch time: 0.2398
Phase: validation Epoch: 2/3 Iter: 10/39 Batch time: 0.2402
Phase: validation Epoch: 2/3 Iter: 11/39 Batch time: 0.2376
Phase: validation Epoch: 2/3 Iter: 12/39 Batch time: 0.2399
Phase: validation Epoch: 2/3 Iter: 13/39 Batch time: 0.2394
Phase: validation Epoch: 2/3 Iter: 14/39 Batch time: 0.2337
Phase: validation Epoch: 2/3 Iter: 15/39 Batch time: 0.2385
Phase: validation Epoch: 2/3 Iter: 16/39 Batch time: 0.2377
Phase: validation Epoch: 2/3 Iter: 17/39 Batch time: 0.2402
Phase: validation Epoch: 2/3 Iter: 18/39 Batch time: 0.2806
Phase: validation Epoch: 2/3 Iter: 19/39 Batch time: 0.2116
Phase: validation Epoch: 2/3 Iter: 20/39 Batch time: 0.2404
Phase: validation Epoch: 2/3 Iter: 21/39 Batch time: 0.2352
Phase: validation Epoch: 2/3 Iter: 22/39 Batch time: 0.2418
Phase: validation Epoch: 2/3 Iter: 23/39 Batch time: 0.2606
Phase: validation Epoch: 2/3 Iter: 24/39 Batch time: 0.2514
Phase: validation Epoch: 2/3 Iter: 25/39 Batch time: 0.2462
Phase: validation Epoch: 2/3 Iter: 26/39 Batch time: 0.2481
Phase: validation Epoch: 2/3 Iter: 27/39 Batch time: 0.2448
Phase: validation Epoch: 2/3 Iter: 28/39 Batch time: 0.2302
Phase: validation Epoch: 2/3 Iter: 29/39 Batch time: 0.2332
Phase: validation Epoch: 2/3 Iter: 30/39 Batch time: 0.2381
Phase: validation Epoch: 2/3 Iter: 31/39 Batch time: 0.2467
Phase: validation Epoch: 2/3 Iter: 32/39 Batch time: 0.2423
Phase: validation Epoch: 2/3 Iter: 33/39 Batch time: 0.2343
Phase: validation Epoch: 2/3 Iter: 34/39 Batch time: 0.2553
Phase: validation Epoch: 2/3 Iter: 35/39 Batch time: 0.1565
Phase: validation Epoch: 2/3 Iter: 36/39 Batch time: 0.2395
Phase: validation Epoch: 2/3 Iter: 37/39 Batch time: 0.2406
Phase: validation Epoch: 2/3 Iter: 38/39 Batch time: 0.2553
Phase: validation Epoch: 2/3 Iter: 39/39 Batch time: 0.1112
Phase: validation   Epoch: 2/3 Loss: 0.5392 Acc: 0.8235
Phase: train Epoch: 3/3 Iter: 1/62 Batch time: 0.3214
Phase: train Epoch: 3/3 Iter: 2/62 Batch time: 0.3162
Phase: train Epoch: 3/3 Iter: 3/62 Batch time: 0.3121
Phase: train Epoch: 3/3 Iter: 4/62 Batch time: 0.3125
Phase: train Epoch: 3/3 Iter: 5/62 Batch time: 0.3095
Phase: train Epoch: 3/3 Iter: 6/62 Batch time: 0.3210
Phase: train Epoch: 3/3 Iter: 7/62 Batch time: 0.4018
Phase: train Epoch: 3/3 Iter: 8/62 Batch time: 0.3246
Phase: train Epoch: 3/3 Iter: 9/62 Batch time: 0.2749
Phase: train Epoch: 3/3 Iter: 10/62 Batch time: 0.3662
Phase: train Epoch: 3/3 Iter: 11/62 Batch time: 0.3141
Phase: train Epoch: 3/3 Iter: 12/62 Batch time: 0.3648
Phase: train Epoch: 3/3 Iter: 13/62 Batch time: 0.3714
Phase: train Epoch: 3/3 Iter: 14/62 Batch time: 0.2822
Phase: train Epoch: 3/3 Iter: 15/62 Batch time: 0.2850
Phase: train Epoch: 3/3 Iter: 16/62 Batch time: 0.3265
Phase: train Epoch: 3/3 Iter: 17/62 Batch time: 0.3908
Phase: train Epoch: 3/3 Iter: 18/62 Batch time: 0.3563
Phase: train Epoch: 3/3 Iter: 19/62 Batch time: 0.3707
Phase: train Epoch: 3/3 Iter: 20/62 Batch time: 0.3528
Phase: train Epoch: 3/3 Iter: 21/62 Batch time: 0.4123
Phase: train Epoch: 3/3 Iter: 22/62 Batch time: 0.2994
Phase: train Epoch: 3/3 Iter: 23/62 Batch time: 0.2692
Phase: train Epoch: 3/3 Iter: 24/62 Batch time: 0.3696
Phase: train Epoch: 3/3 Iter: 25/62 Batch time: 0.3278
Phase: train Epoch: 3/3 Iter: 26/62 Batch time: 0.3635
Phase: train Epoch: 3/3 Iter: 27/62 Batch time: 0.3115
Phase: train Epoch: 3/3 Iter: 28/62 Batch time: 0.3060
Phase: train Epoch: 3/3 Iter: 29/62 Batch time: 0.2813
Phase: train Epoch: 3/3 Iter: 30/62 Batch time: 0.3603
Phase: train Epoch: 3/3 Iter: 31/62 Batch time: 0.3602
Phase: train Epoch: 3/3 Iter: 32/62 Batch time: 0.3092
Phase: train Epoch: 3/3 Iter: 33/62 Batch time: 0.3114
Phase: train Epoch: 3/3 Iter: 34/62 Batch time: 0.3030
Phase: train Epoch: 3/3 Iter: 35/62 Batch time: 0.3087
Phase: train Epoch: 3/3 Iter: 36/62 Batch time: 0.3423
Phase: train Epoch: 3/3 Iter: 37/62 Batch time: 0.3252
Phase: train Epoch: 3/3 Iter: 38/62 Batch time: 0.3097
Phase: train Epoch: 3/3 Iter: 39/62 Batch time: 0.3649
Phase: train Epoch: 3/3 Iter: 40/62 Batch time: 0.3246
Phase: train Epoch: 3/3 Iter: 41/62 Batch time: 0.3062
Phase: train Epoch: 3/3 Iter: 42/62 Batch time: 0.3131
Phase: train Epoch: 3/3 Iter: 43/62 Batch time: 0.2821
Phase: train Epoch: 3/3 Iter: 44/62 Batch time: 0.3679
Phase: train Epoch: 3/3 Iter: 45/62 Batch time: 0.3618
Phase: train Epoch: 3/3 Iter: 46/62 Batch time: 0.3881
Phase: train Epoch: 3/3 Iter: 47/62 Batch time: 0.3022
Phase: train Epoch: 3/3 Iter: 48/62 Batch time: 0.3809
Phase: train Epoch: 3/3 Iter: 49/62 Batch time: 0.3453
Phase: train Epoch: 3/3 Iter: 50/62 Batch time: 0.4078
Phase: train Epoch: 3/3 Iter: 51/62 Batch time: 0.3165
Phase: train Epoch: 3/3 Iter: 52/62 Batch time: 0.3176
Phase: train Epoch: 3/3 Iter: 53/62 Batch time: 0.3077
Phase: train Epoch: 3/3 Iter: 54/62 Batch time: 0.3259
Phase: train Epoch: 3/3 Iter: 55/62 Batch time: 0.3106
Phase: train Epoch: 3/3 Iter: 56/62 Batch time: 0.3110
Phase: train Epoch: 3/3 Iter: 57/62 Batch time: 0.3062
Phase: train Epoch: 3/3 Iter: 58/62 Batch time: 0.2783
Phase: train Epoch: 3/3 Iter: 59/62 Batch time: 0.3587
Phase: train Epoch: 3/3 Iter: 60/62 Batch time: 0.3269
Phase: train Epoch: 3/3 Iter: 61/62 Batch time: 0.3590
Phase: train Epoch: 3/3 Loss: 0.5652 Acc: 0.7336
Phase: validation Epoch: 3/3 Iter: 1/39 Batch time: 0.2444
Phase: validation Epoch: 3/3 Iter: 2/39 Batch time: 0.2402
Phase: validation Epoch: 3/3 Iter: 3/39 Batch time: 0.2387
Phase: validation Epoch: 3/3 Iter: 4/39 Batch time: 0.2768
Phase: validation Epoch: 3/3 Iter: 5/39 Batch time: 0.2840
Phase: validation Epoch: 3/3 Iter: 6/39 Batch time: 0.2375
Phase: validation Epoch: 3/3 Iter: 7/39 Batch time: 0.2413
Phase: validation Epoch: 3/3 Iter: 8/39 Batch time: 0.2318
Phase: validation Epoch: 3/3 Iter: 9/39 Batch time: 0.2371
Phase: validation Epoch: 3/3 Iter: 10/39 Batch time: 0.2410
Phase: validation Epoch: 3/3 Iter: 11/39 Batch time: 0.2551
Phase: validation Epoch: 3/3 Iter: 12/39 Batch time: 0.2395
Phase: validation Epoch: 3/3 Iter: 13/39 Batch time: 0.2736
Phase: validation Epoch: 3/3 Iter: 14/39 Batch time: 0.2096
Phase: validation Epoch: 3/3 Iter: 15/39 Batch time: 0.2379
Phase: validation Epoch: 3/3 Iter: 16/39 Batch time: 0.2426
Phase: validation Epoch: 3/3 Iter: 17/39 Batch time: 0.2314
Phase: validation Epoch: 3/3 Iter: 18/39 Batch time: 0.2383
Phase: validation Epoch: 3/3 Iter: 19/39 Batch time: 0.2500
Phase: validation Epoch: 3/3 Iter: 20/39 Batch time: 0.2420
Phase: validation Epoch: 3/3 Iter: 21/39 Batch time: 0.2379
Phase: validation Epoch: 3/3 Iter: 22/39 Batch time: 0.2464
Phase: validation Epoch: 3/3 Iter: 23/39 Batch time: 0.2280
Phase: validation Epoch: 3/3 Iter: 24/39 Batch time: 0.2197
Phase: validation Epoch: 3/3 Iter: 25/39 Batch time: 0.2374
Phase: validation Epoch: 3/3 Iter: 26/39 Batch time: 0.2331
Phase: validation Epoch: 3/3 Iter: 27/39 Batch time: 0.2351
Phase: validation Epoch: 3/3 Iter: 28/39 Batch time: 0.2408
Phase: validation Epoch: 3/3 Iter: 29/39 Batch time: 0.2197
Phase: validation Epoch: 3/3 Iter: 30/39 Batch time: 0.2350
Phase: validation Epoch: 3/3 Iter: 31/39 Batch time: 0.2386
Phase: validation Epoch: 3/3 Iter: 32/39 Batch time: 0.2378
Phase: validation Epoch: 3/3 Iter: 33/39 Batch time: 0.2420
Phase: validation Epoch: 3/3 Iter: 34/39 Batch time: 0.2438
Phase: validation Epoch: 3/3 Iter: 35/39 Batch time: 0.2392
Phase: validation Epoch: 3/3 Iter: 36/39 Batch time: 0.2403
Phase: validation Epoch: 3/3 Iter: 37/39 Batch time: 0.2390
Phase: validation Epoch: 3/3 Iter: 38/39 Batch time: 0.3107
Phase: validation Epoch: 3/3 Iter: 39/39 Batch time: 0.0799
Phase: validation   Epoch: 3/3 Loss: 0.4484 Acc: 0.8497
Training completed in 1m 51s
Best test loss: 0.4484 | Best test accuracy: 0.8497

Visualizing the model predictions

We first define a visualization function for a batch of test data.

def visualize_model(model, num_images=6, fig_name="Predictions"):
    images_so_far = 0
    _fig = plt.figure(fig_name)
    model.eval()
    with torch.no_grad():
        for _i, (inputs, labels) in enumerate(dataloaders["validation"]):
            inputs = inputs.to(device)
            labels = labels.to(device)
            outputs = model(inputs)
            _, preds = torch.max(outputs, 1)
            for j in range(inputs.size()[0]):
                images_so_far += 1
                ax = plt.subplot(num_images // 2, 2, images_so_far)
                ax.axis("off")
                ax.set_title("[{}]".format(class_names[preds[j]]))
                imshow(inputs.cpu().data[j])
                if images_so_far == num_images:
                    return

Finally, we can run the previous function to see a batch of images with the corresponding predictions.

visualize_model(model_hybrid, num_images=batch_size)
plt.show()
[ants], [ants], [ants], [ants]

References

[1] Andrea Mari, Thomas R. Bromley, Josh Izaac, Maria Schuld, and Nathan Killoran. Transfer learning in hybrid classical-quantum neural networks. arXiv:1912.08278 (2019).

[2] Rajat Raina, Alexis Battle, Honglak Lee, Benjamin Packer, and Andrew Y Ng. Self-taught learning: transfer learning from unlabeled data. Proceedings of the 24th International Conference on Machine Learning*, 759–766 (2007).

[3] Kaiming He, Xiangyu Zhang, Shaoqing ren and Jian Sun. Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 770-778 (2016).

[4] Ville Bergholm, Josh Izaac, Maria Schuld, Christian Gogolin, Carsten Blank, Keri McKiernan, and Nathan Killoran. PennyLane: Automatic differentiation of hybrid quantum-classical computations. arXiv:1811.04968 (2018).

Total running time of the script: ( 1 minutes 53.114 seconds)

Gallery generated by Sphinx-Gallery