/ Learn / Demos / Quantum Machine Learning / Quantum transfer learning

Quantum transfer learning

Published: December 19, 2019. Last updated: November 6, 2024.

In this tutorial we apply a machine learning method, known as transfer learning, to an image classifier based on a hybrid classical-quantum network.

This example follows the general structure of the PyTorch tutorial on transfer learning by Sasank Chilamkurthy, with the crucial difference of using a quantum circuit to perform the final classification task.

More details on this topic can be found in the research paper [1] (Mari et al. (2019)).

Introduction

Transfer learning is a well-established technique for training artificial neural networks (see e.g., Ref. [2]), which is based on the general intuition that if a pre-trained network is good at solving a given problem, then, with just a bit of additional training, it can be used to also solve a different but related problem.

As discussed in Ref. [1], this idea can be formalized in terms of two abstract networks $A$ and $B,$ independently from their quantum or classical physical nature.


transfer_general

As sketched in the above figure, one can give the following general definition of the transfer learning method:

  1. Take a network $A$ that has been pre-trained on a dataset $D_A$ and for a given task $T_A.$

  2. Remove some of the final layers. In this way, the resulting truncated network $A'$ can be used as a feature extractor.

  3. Connect a new trainable network $B$ at the end of the pre-trained network $A'.$

  4. Keep the weights of $A'$ constant, and train the final block $B$ with a new dataset $D_B$ and/or for a new task of interest $T_B.$

When dealing with hybrid systems, depending on the physical nature (classical or quantum) of the networks $A$ and $B,$ one can have different implementations of transfer learning as

summarized in following table:


Network A

Network B

Transfer learning scheme

Classical

Classical

CC - Standard classical method. See e.g., Ref. [2].

Classical

Quantum

CQ - Hybrid model presented in this tutorial.

Quantum

Classical

QC - Model studied in Ref. [1].

Quantum

Quantum

QQ - Model studied in Ref. [1].

Classical-to-quantum transfer learning

We focus on the CQ transfer learning scheme discussed in the previous section and we give a specific example.

  1. As pre-trained network $A$ we use ResNet18, a deep residual neural network introduced by Microsoft in Ref. [3], which is pre-trained on the ImageNet dataset.

  2. After removing its final layer we obtain $A',$ a pre-processing block which maps any input high-resolution image into 512 abstract features.

  3. Such features are classified by a 4-qubit “dressed quantum circuit” $B,$ i.e., a variational quantum circuit sandwiched between two classical layers.

  4. The hybrid model is trained, keeping $A'$ constant, on the Hymenoptera dataset (a small subclass of ImageNet) containing images of ants and bees.

A graphical representation of the full data processing pipeline is given in the figure below.

transfer_c2q

General setup

Note

To use the PyTorch interface in PennyLane, you must first install PyTorch.

In addition to PennyLane, we will also need some standard PyTorch libraries and the plotting library matplotlib.

# Some parts of this code are based on the Python script:
# https://github.com/pytorch/tutorials/blob/master/beginner_source/transfer_learning_tutorial.py
# License: BSD

import time import os import copy

# PyTorch import torch import torch.nn as nn import torch.optim as optim from torch.optim import lr_scheduler import torchvision from torchvision import datasets, transforms

# Pennylane import pennylane as qml from pennylane import numpy as np

torch.manual_seed(42) np.random.seed(42)

# Plotting import matplotlib.pyplot as plt

# OpenMP: number of parallel threads. os.environ["OMP_NUM_THREADS"] = "1"

Setting of the main hyper-parameters of the model

Note

To reproduce the results of Ref. [1], num_epochs should be set to 30 which may take a long time. We suggest to first try with num_epochs=1 and, if everything runs smoothly, increase it to a larger value.

n_qubits = 4                # Number of qubits
step = 0.0004               # Learning rate
batch_size = 4              # Number of samples for each training step
num_epochs = 3              # Number of training epochs
q_depth = 6                 # Depth of the quantum circuit (number of variational layers)
gamma_lr_scheduler = 0.1    # Learning rate reduction applied every 10 epochs.
q_delta = 0.01              # Initial spread of random quantum weights
start_time = time.time()    # Start of the computation timer

We initialize a PennyLane device with a default.qubit backend.

dev = qml.device("default.qubit", wires=n_qubits)

We configure PyTorch to use CUDA only if available. Otherwise the CPU is used.

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

Dataset loading

Note

The dataset containing images of ants and bees can be downloaded here and should be extracted in the subfolder ../_data/hymenoptera_data.

This is a very small dataset (roughly 250 images), too small for training from scratch a classical or quantum model, however it is enough when using transfer learning approach.

The PyTorch packages torchvision and torch.utils.data are used for loading the dataset and performing standard preliminary image operations: resize, center, crop, normalize, etc.

data_transforms = {
    "train": transforms.Compose(
        [
            # transforms.RandomResizedCrop(224),     # uncomment for data augmentation
            # transforms.RandomHorizontalFlip(),     # uncomment for data augmentation
            transforms.Resize(256),
            transforms.CenterCrop(224),
            transforms.ToTensor(),
            # Normalize input channels using mean values and standard deviations of ImageNet.
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
        ]
    ),
    "val": transforms.Compose(
        [
            transforms.Resize(256),
            transforms.CenterCrop(224),
            transforms.ToTensor(),
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
        ]
    ),
}

data_dir = "../_data/hymenoptera_data" image_datasets = { x if x == "train" else "validation": datasets.ImageFolder( os.path.join(data_dir, x), data_transforms[x] ) for x in ["train", "val"] } dataset_sizes = {x: len(image_datasets[x]) for x in ["train", "validation"]} class_names = image_datasets["train"].classes

# Initialize dataloader dataloaders = { x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size, shuffle=True) for x in ["train", "validation"] }

# function to plot images def imshow(inp, title=None): """Display image from tensor.""" inp = inp.numpy().transpose((1, 2, 0)) # Inverse of the initial normalization operation. mean = np.array([0.485, 0.456, 0.406]) std = np.array([0.229, 0.224, 0.225]) inp = std * inp + mean inp = np.clip(inp, 0, 1) plt.imshow(inp) if title is not None: plt.title(title)

Let us show a batch of the test data, just to have an idea of the classification problem.

# Get a batch of training data
inputs, classes = next(iter(dataloaders["validation"]))

# Make a grid from batch out = torchvision.utils.make_grid(inputs)

imshow(out, title=[class_names[x] for x in classes])

dataloaders = { x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size, shuffle=True) for x in ["train", "validation"] }
['bees', 'ants', 'bees', 'bees']

Variational quantum circuit

We first define some quantum layers that will compose the quantum circuit.

def H_layer(nqubits):
    """Layer of single-qubit Hadamard gates.
    """
    for idx in range(nqubits):
        qml.Hadamard(wires=idx)

def RY_layer(w): """Layer of parametrized qubit rotations around the y axis. """ for idx, element in enumerate(w): qml.RY(element, wires=idx)

def entangling_layer(nqubits): """Layer of CNOTs followed by another shifted layer of CNOT. """ # In other words it should apply something like : # CNOT CNOT CNOT CNOT... CNOT # CNOT CNOT CNOT... CNOT for i in range(0, nqubits - 1, 2): # Loop over even indices: i=0,2,...N-2 qml.CNOT(wires=[i, i + 1]) for i in range(1, nqubits - 1, 2): # Loop over odd indices: i=1,3,...N-3 qml.CNOT(wires=[i, i + 1])

Now we define the quantum circuit through the PennyLane qnode decorator .

The structure is that of a typical variational quantum circuit:

  • Embedding layer: All qubits are first initialized in a balanced superposition of up and down states, then they are rotated according to the input parameters (local embedding).

  • Variational layers: A sequence of trainable rotation layers and constant entangling layers is applied.

  • Measurement layer: For each qubit, the local expectation value of the $Z$ operator is measured. This produces a classical output vector, suitable for additional post-processing.

@qml.qnode(dev)
def quantum_net(q_input_features, q_weights_flat):
    """
    The variational quantum circuit.
    """

# Reshape weights q_weights = q_weights_flat.reshape(q_depth, n_qubits)

# Start from state |+> , unbiased w.r.t. |0> and |1> H_layer(n_qubits)

# Embed features in the quantum node RY_layer(q_input_features)

# Sequence of trainable variational layers for k in range(q_depth): entangling_layer(n_qubits) RY_layer(q_weights[k])

# Expectation values in the Z basis exp_vals = [qml.expval(qml.PauliZ(position)) for position in range(n_qubits)] return tuple(exp_vals)

Dressed quantum circuit

We can now define a custom torch.nn.Module representing a dressed quantum circuit.

This is a concatenation of:

  • A classical pre-processing layer (nn.Linear).

  • A classical activation function (torch.tanh).

  • A constant np.pi/2.0 scaling.

  • The previously defined quantum circuit (quantum_net).

  • A classical post-processing layer (nn.Linear).

The input of the module is a batch of vectors with 512 real parameters (features) and the output is a batch of vectors with two real outputs (associated with the two classes of images: ants and bees).

class DressedQuantumNet(nn.Module):
    """
    Torch module implementing the *dressed* quantum net.
    """

def __init__(self): """ Definition of the *dressed* layout. """

super().__init__() self.pre_net = nn.Linear(512, n_qubits) self.q_params = nn.Parameter(q_delta * torch.randn(q_depth * n_qubits)) self.post_net = nn.Linear(n_qubits, 2)

def forward(self, input_features): """ Defining how tensors are supposed to move through the *dressed* quantum net. """

# obtain the input features for the quantum circuit # by reducing the feature dimension from 512 to 4 pre_out = self.pre_net(input_features) q_in = torch.tanh(pre_out) * np.pi / 2.0

# Apply the quantum circuit to each element of the batch and append to q_out q_out = torch.Tensor(0, n_qubits) q_out = q_out.to(device) for elem in q_in: q_out_elem = torch.hstack(quantum_net(elem, self.q_params)).float().unsqueeze(0) q_out = torch.cat((q_out, q_out_elem))

# return the two-dimensional prediction from the postprocessing layer return self.post_net(q_out)

Hybrid classical-quantum model

We are finally ready to build our full hybrid classical-quantum network. We follow the transfer learning approach:

  1. First load the classical pre-trained network ResNet18 from the torchvision.models zoo.

  2. Freeze all the weights since they should not be trained.

  3. Replace the last fully connected layer with our trainable dressed quantum circuit (DressedQuantumNet).

Note

The ResNet18 model is automatically downloaded by PyTorch and it may take several minutes (only the first time).

weights = torchvision.models.ResNet18_Weights.IMAGENET1K_V1
model_hybrid = torchvision.models.resnet18(weights=weights)

for param in model_hybrid.parameters(): param.requires_grad = False

# Notice that model_hybrid.fc is the last layer of ResNet18 model_hybrid.fc = DressedQuantumNet()

# Use CUDA or CPU according to the "device" object. model_hybrid = model_hybrid.to(device)
Downloading: "https://download.pytorch.org/models/resnet18-f37072fd.pth" to /home/runner/.cache/torch/hub/checkpoints/resnet18-f37072fd.pth

0%| | 0.00/44.7M [00:00<?, ?B/s] 66%|██████▌ | 29.3M/44.7M [00:00<00:00, 307MB/s] 100%|██████████| 44.7M/44.7M [00:00<00:00, 310MB/s]

Training and results

Before training the network we need to specify the loss function.

We use, as usual in classification problem, the cross-entropy which is directly available within torch.nn.

criterion = nn.CrossEntropyLoss()

We also initialize the Adam optimizer which is called at each training step in order to update the weights of the model.

optimizer_hybrid = optim.Adam(model_hybrid.fc.parameters(), lr=step)

We schedule to reduce the learning rate by a factor of gamma_lr_scheduler every 10 epochs.

exp_lr_scheduler = lr_scheduler.StepLR(
    optimizer_hybrid, step_size=10, gamma=gamma_lr_scheduler
)

What follows is a training function that will be called later. This function should return a trained model that can be used to make predictions (classifications).

def train_model(model, criterion, optimizer, scheduler, num_epochs):
    since = time.time()
    best_model_wts = copy.deepcopy(model.state_dict())
    best_acc = 0.0
    best_loss = 10000.0  # Large arbitrary number
    best_acc_train = 0.0
    best_loss_train = 10000.0  # Large arbitrary number
    print("Training started:")

for epoch in range(num_epochs):

# Each epoch has a training and validation phase for phase in ["train", "validation"]: if phase == "train": # Set model to training mode model.train() else: # Set model to evaluate mode model.eval() running_loss = 0.0 running_corrects = 0

# Iterate over data. n_batches = dataset_sizes[phase] // batch_size it = 0 for inputs, labels in dataloaders[phase]: since_batch = time.time() batch_size_ = len(inputs) inputs = inputs.to(device) labels = labels.to(device) optimizer.zero_grad()

# Track/compute gradient and make an optimization step only when training with torch.set_grad_enabled(phase == "train"): outputs = model(inputs) _, preds = torch.max(outputs, 1) loss = criterion(outputs, labels) if phase == "train": loss.backward() optimizer.step()

# Print iteration results running_loss += loss.item() * batch_size_ batch_corrects = torch.sum(preds == labels.data).item() running_corrects += batch_corrects print( "Phase: {} Epoch: {}/{} Iter: {}/{} Batch time: {:.4f}".format( phase, epoch + 1, num_epochs, it + 1, n_batches + 1, time.time() - since_batch, ), end="\r", flush=True, ) it += 1

# Print epoch results epoch_loss = running_loss / dataset_sizes[phase] epoch_acc = running_corrects / dataset_sizes[phase] print( "Phase: {} Epoch: {}/{} Loss: {:.4f} Acc: {:.4f} ".format( "train" if phase == "train" else "validation ", epoch + 1, num_epochs, epoch_loss, epoch_acc, ) )

# Check if this is the best model wrt previous epochs if phase == "validation" and epoch_acc > best_acc: best_acc = epoch_acc best_model_wts = copy.deepcopy(model.state_dict()) if phase == "validation" and epoch_loss < best_loss: best_loss = epoch_loss if phase == "train" and epoch_acc > best_acc_train: best_acc_train = epoch_acc if phase == "train" and epoch_loss < best_loss_train: best_loss_train = epoch_loss

# Update learning rate if phase == "train": scheduler.step()

# Print final results model.load_state_dict(best_model_wts) time_elapsed = time.time() - since print( "Training completed in {:.0f}m {:.0f}s".format(time_elapsed // 60, time_elapsed % 60) ) print("Best test loss: {:.4f} | Best test accuracy: {:.4f}".format(best_loss, best_acc)) return model

We are ready to perform the actual training process.

model_hybrid = train_model(
    model_hybrid, criterion, optimizer_hybrid, exp_lr_scheduler, num_epochs=num_epochs
)
Training started:
Phase: train Epoch: 1/3 Iter: 1/62 Batch time: 0.2329
Phase: train Epoch: 1/3 Iter: 2/62 Batch time: 0.2176
Phase: train Epoch: 1/3 Iter: 3/62 Batch time: 0.2166
Phase: train Epoch: 1/3 Iter: 4/62 Batch time: 0.2178
Phase: train Epoch: 1/3 Iter: 5/62 Batch time: 0.2177
Phase: train Epoch: 1/3 Iter: 6/62 Batch time: 0.2234
Phase: train Epoch: 1/3 Iter: 7/62 Batch time: 0.2178
Phase: train Epoch: 1/3 Iter: 8/62 Batch time: 0.2187
Phase: train Epoch: 1/3 Iter: 9/62 Batch time: 0.2180
Phase: train Epoch: 1/3 Iter: 10/62 Batch time: 0.2255
Phase: train Epoch: 1/3 Iter: 11/62 Batch time: 0.2186
Phase: train Epoch: 1/3 Iter: 12/62 Batch time: 0.2179
Phase: train Epoch: 1/3 Iter: 13/62 Batch time: 0.2194
Phase: train Epoch: 1/3 Iter: 14/62 Batch time: 0.2219
Phase: train Epoch: 1/3 Iter: 15/62 Batch time: 0.2182
Phase: train Epoch: 1/3 Iter: 16/62 Batch time: 0.2170
Phase: train Epoch: 1/3 Iter: 17/62 Batch time: 0.2183
Phase: train Epoch: 1/3 Iter: 18/62 Batch time: 0.2173
Phase: train Epoch: 1/3 Iter: 19/62 Batch time: 0.2238
Phase: train Epoch: 1/3 Iter: 20/62 Batch time: 0.2186
Phase: train Epoch: 1/3 Iter: 21/62 Batch time: 0.2193
Phase: train Epoch: 1/3 Iter: 22/62 Batch time: 0.2175
Phase: train Epoch: 1/3 Iter: 23/62 Batch time: 0.2232
Phase: train Epoch: 1/3 Iter: 24/62 Batch time: 0.2180
Phase: train Epoch: 1/3 Iter: 25/62 Batch time: 0.2184
Phase: train Epoch: 1/3 Iter: 26/62 Batch time: 0.2181
Phase: train Epoch: 1/3 Iter: 27/62 Batch time: 0.2262
Phase: train Epoch: 1/3 Iter: 28/62 Batch time: 0.2193
Phase: train Epoch: 1/3 Iter: 29/62 Batch time: 0.2186
Phase: train Epoch: 1/3 Iter: 30/62 Batch time: 0.2184
Phase: train Epoch: 1/3 Iter: 31/62 Batch time: 0.2172
Phase: train Epoch: 1/3 Iter: 32/62 Batch time: 0.2235
Phase: train Epoch: 1/3 Iter: 33/62 Batch time: 0.2188
Phase: train Epoch: 1/3 Iter: 34/62 Batch time: 0.2186
Phase: train Epoch: 1/3 Iter: 35/62 Batch time: 0.2179
Phase: train Epoch: 1/3 Iter: 36/62 Batch time: 0.2246
Phase: train Epoch: 1/3 Iter: 37/62 Batch time: 0.2188
Phase: train Epoch: 1/3 Iter: 38/62 Batch time: 0.2251
Phase: train Epoch: 1/3 Iter: 39/62 Batch time: 0.2183
Phase: train Epoch: 1/3 Iter: 40/62 Batch time: 0.2205
Phase: train Epoch: 1/3 Iter: 41/62 Batch time: 0.2185
Phase: train Epoch: 1/3 Iter: 42/62 Batch time: 0.2199
Phase: train Epoch: 1/3 Iter: 43/62 Batch time: 0.2175
Phase: train Epoch: 1/3 Iter: 44/62 Batch time: 0.2329
Phase: train Epoch: 1/3 Iter: 45/62 Batch time: 0.2412
Phase: train Epoch: 1/3 Iter: 46/62 Batch time: 0.2192
Phase: train Epoch: 1/3 Iter: 47/62 Batch time: 0.2183
Phase: train Epoch: 1/3 Iter: 48/62 Batch time: 0.2188
Phase: train Epoch: 1/3 Iter: 49/62 Batch time: 0.2230
Phase: train Epoch: 1/3 Iter: 50/62 Batch time: 0.2177
Phase: train Epoch: 1/3 Iter: 51/62 Batch time: 0.2185
Phase: train Epoch: 1/3 Iter: 52/62 Batch time: 0.2178
Phase: train Epoch: 1/3 Iter: 53/62 Batch time: 0.2225
Phase: train Epoch: 1/3 Iter: 54/62 Batch time: 0.2178
Phase: train Epoch: 1/3 Iter: 55/62 Batch time: 0.2186
Phase: train Epoch: 1/3 Iter: 56/62 Batch time: 0.2178
Phase: train Epoch: 1/3 Iter: 57/62 Batch time: 0.2254
Phase: train Epoch: 1/3 Iter: 58/62 Batch time: 0.2242
Phase: train Epoch: 1/3 Iter: 59/62 Batch time: 0.2186
Phase: train Epoch: 1/3 Iter: 60/62 Batch time: 0.2176
Phase: train Epoch: 1/3 Iter: 61/62 Batch time: 0.2188
Phase: train Epoch: 1/3 Loss: 0.6990 Acc: 0.5246
Phase: validation Epoch: 1/3 Iter: 1/39 Batch time: 0.1816
Phase: validation Epoch: 1/3 Iter: 2/39 Batch time: 0.1769
Phase: validation Epoch: 1/3 Iter: 3/39 Batch time: 0.1770
Phase: validation Epoch: 1/3 Iter: 4/39 Batch time: 0.1782
Phase: validation Epoch: 1/3 Iter: 5/39 Batch time: 0.1767
Phase: validation Epoch: 1/3 Iter: 6/39 Batch time: 0.1777
Phase: validation Epoch: 1/3 Iter: 7/39 Batch time: 0.1777
Phase: validation Epoch: 1/3 Iter: 8/39 Batch time: 0.1784
Phase: validation Epoch: 1/3 Iter: 9/39 Batch time: 0.1776
Phase: validation Epoch: 1/3 Iter: 10/39 Batch time: 0.1776
Phase: validation Epoch: 1/3 Iter: 11/39 Batch time: 0.1798
Phase: validation Epoch: 1/3 Iter: 12/39 Batch time: 0.1887
Phase: validation Epoch: 1/3 Iter: 13/39 Batch time: 0.1802
Phase: validation Epoch: 1/3 Iter: 14/39 Batch time: 0.1790
Phase: validation Epoch: 1/3 Iter: 15/39 Batch time: 0.1780
Phase: validation Epoch: 1/3 Iter: 16/39 Batch time: 0.1774
Phase: validation Epoch: 1/3 Iter: 17/39 Batch time: 0.1837
Phase: validation Epoch: 1/3 Iter: 18/39 Batch time: 0.1763
Phase: validation Epoch: 1/3 Iter: 19/39 Batch time: 0.1765
Phase: validation Epoch: 1/3 Iter: 20/39 Batch time: 0.1776
Phase: validation Epoch: 1/3 Iter: 21/39 Batch time: 0.1767
Phase: validation Epoch: 1/3 Iter: 22/39 Batch time: 0.1811
Phase: validation Epoch: 1/3 Iter: 23/39 Batch time: 0.1775
Phase: validation Epoch: 1/3 Iter: 24/39 Batch time: 0.1772
Phase: validation Epoch: 1/3 Iter: 25/39 Batch time: 0.1772
Phase: validation Epoch: 1/3 Iter: 26/39 Batch time: 0.1792
Phase: validation Epoch: 1/3 Iter: 27/39 Batch time: 0.1778
Phase: validation Epoch: 1/3 Iter: 28/39 Batch time: 0.1769
Phase: validation Epoch: 1/3 Iter: 29/39 Batch time: 0.1777
Phase: validation Epoch: 1/3 Iter: 30/39 Batch time: 0.1772
Phase: validation Epoch: 1/3 Iter: 31/39 Batch time: 0.1778
Phase: validation Epoch: 1/3 Iter: 32/39 Batch time: 0.1777
Phase: validation Epoch: 1/3 Iter: 33/39 Batch time: 0.1814
Phase: validation Epoch: 1/3 Iter: 34/39 Batch time: 0.1778
Phase: validation Epoch: 1/3 Iter: 35/39 Batch time: 0.1771
Phase: validation Epoch: 1/3 Iter: 36/39 Batch time: 0.1763
Phase: validation Epoch: 1/3 Iter: 37/39 Batch time: 0.1762
Phase: validation Epoch: 1/3 Iter: 38/39 Batch time: 0.1818
Phase: validation Epoch: 1/3 Iter: 39/39 Batch time: 0.0497
Phase: validation   Epoch: 1/3 Loss: 0.6429 Acc: 0.6536
Phase: train Epoch: 2/3 Iter: 1/62 Batch time: 0.2120
Phase: train Epoch: 2/3 Iter: 2/62 Batch time: 0.2137
Phase: train Epoch: 2/3 Iter: 3/62 Batch time: 0.2120
Phase: train Epoch: 2/3 Iter: 4/62 Batch time: 0.2138
Phase: train Epoch: 2/3 Iter: 5/62 Batch time: 0.2120
Phase: train Epoch: 2/3 Iter: 6/62 Batch time: 0.2119
Phase: train Epoch: 2/3 Iter: 7/62 Batch time: 0.2124
Phase: train Epoch: 2/3 Iter: 8/62 Batch time: 0.2123
Phase: train Epoch: 2/3 Iter: 9/62 Batch time: 0.2155
Phase: train Epoch: 2/3 Iter: 10/62 Batch time: 0.2117
Phase: train Epoch: 2/3 Iter: 11/62 Batch time: 0.2127
Phase: train Epoch: 2/3 Iter: 12/62 Batch time: 0.2124
Phase: train Epoch: 2/3 Iter: 13/62 Batch time: 0.2137
Phase: train Epoch: 2/3 Iter: 14/62 Batch time: 0.2118
Phase: train Epoch: 2/3 Iter: 15/62 Batch time: 0.2122
Phase: train Epoch: 2/3 Iter: 16/62 Batch time: 0.2157
Phase: train Epoch: 2/3 Iter: 17/62 Batch time: 0.2129
Phase: train Epoch: 2/3 Iter: 18/62 Batch time: 0.2152
Phase: train Epoch: 2/3 Iter: 19/62 Batch time: 0.2118
Phase: train Epoch: 2/3 Iter: 20/62 Batch time: 0.2154
Phase: train Epoch: 2/3 Iter: 21/62 Batch time: 0.2131
Phase: train Epoch: 2/3 Iter: 22/62 Batch time: 0.2141
Phase: train Epoch: 2/3 Iter: 23/62 Batch time: 0.2123
Phase: train Epoch: 2/3 Iter: 24/62 Batch time: 0.2124
Phase: train Epoch: 2/3 Iter: 25/62 Batch time: 0.2127
Phase: train Epoch: 2/3 Iter: 26/62 Batch time: 0.2121
Phase: train Epoch: 2/3 Iter: 27/62 Batch time: 0.2138
Phase: train Epoch: 2/3 Iter: 28/62 Batch time: 0.2123
Phase: train Epoch: 2/3 Iter: 29/62 Batch time: 0.2123
Phase: train Epoch: 2/3 Iter: 30/62 Batch time: 0.2191
Phase: train Epoch: 2/3 Iter: 31/62 Batch time: 0.2254
Phase: train Epoch: 2/3 Iter: 32/62 Batch time: 0.2209
Phase: train Epoch: 2/3 Iter: 33/62 Batch time: 0.2172
Phase: train Epoch: 2/3 Iter: 34/62 Batch time: 0.2127
Phase: train Epoch: 2/3 Iter: 35/62 Batch time: 0.2135
Phase: train Epoch: 2/3 Iter: 36/62 Batch time: 0.2145
Phase: train Epoch: 2/3 Iter: 37/62 Batch time: 0.2192
Phase: train Epoch: 2/3 Iter: 38/62 Batch time: 0.2158
Phase: train Epoch: 2/3 Iter: 39/62 Batch time: 0.2152
Phase: train Epoch: 2/3 Iter: 40/62 Batch time: 0.2197
Phase: train Epoch: 2/3 Iter: 41/62 Batch time: 0.2140
Phase: train Epoch: 2/3 Iter: 42/62 Batch time: 0.2154
Phase: train Epoch: 2/3 Iter: 43/62 Batch time: 0.2144
Phase: train Epoch: 2/3 Iter: 44/62 Batch time: 0.2212
Phase: train Epoch: 2/3 Iter: 45/62 Batch time: 0.2353
Phase: train Epoch: 2/3 Iter: 46/62 Batch time: 0.2134
Phase: train Epoch: 2/3 Iter: 47/62 Batch time: 0.2125
Phase: train Epoch: 2/3 Iter: 48/62 Batch time: 0.2181
Phase: train Epoch: 2/3 Iter: 49/62 Batch time: 0.2158
Phase: train Epoch: 2/3 Iter: 50/62 Batch time: 0.2119
Phase: train Epoch: 2/3 Iter: 51/62 Batch time: 0.2121
Phase: train Epoch: 2/3 Iter: 52/62 Batch time: 0.2122
Phase: train Epoch: 2/3 Iter: 53/62 Batch time: 0.2139
Phase: train Epoch: 2/3 Iter: 54/62 Batch time: 0.2126
Phase: train Epoch: 2/3 Iter: 55/62 Batch time: 0.2125
Phase: train Epoch: 2/3 Iter: 56/62 Batch time: 0.2128
Phase: train Epoch: 2/3 Iter: 57/62 Batch time: 0.2122
Phase: train Epoch: 2/3 Iter: 58/62 Batch time: 0.2156
Phase: train Epoch: 2/3 Iter: 59/62 Batch time: 0.2123
Phase: train Epoch: 2/3 Iter: 60/62 Batch time: 0.2121
Phase: train Epoch: 2/3 Iter: 61/62 Batch time: 0.2136
Phase: train Epoch: 2/3 Loss: 0.6134 Acc: 0.7008
Phase: validation Epoch: 2/3 Iter: 1/39 Batch time: 0.1773
Phase: validation Epoch: 2/3 Iter: 2/39 Batch time: 0.1715
Phase: validation Epoch: 2/3 Iter: 3/39 Batch time: 0.1714
Phase: validation Epoch: 2/3 Iter: 4/39 Batch time: 0.1721
Phase: validation Epoch: 2/3 Iter: 5/39 Batch time: 0.1717
Phase: validation Epoch: 2/3 Iter: 6/39 Batch time: 0.1711
Phase: validation Epoch: 2/3 Iter: 7/39 Batch time: 0.1740
Phase: validation Epoch: 2/3 Iter: 8/39 Batch time: 0.1726
Phase: validation Epoch: 2/3 Iter: 9/39 Batch time: 0.1730
Phase: validation Epoch: 2/3 Iter: 10/39 Batch time: 0.1713
Phase: validation Epoch: 2/3 Iter: 11/39 Batch time: 0.1728
Phase: validation Epoch: 2/3 Iter: 12/39 Batch time: 0.1785
Phase: validation Epoch: 2/3 Iter: 13/39 Batch time: 0.1705
Phase: validation Epoch: 2/3 Iter: 14/39 Batch time: 0.1744
Phase: validation Epoch: 2/3 Iter: 15/39 Batch time: 0.1712
Phase: validation Epoch: 2/3 Iter: 16/39 Batch time: 0.1720
Phase: validation Epoch: 2/3 Iter: 17/39 Batch time: 0.1726
Phase: validation Epoch: 2/3 Iter: 18/39 Batch time: 0.1729
Phase: validation Epoch: 2/3 Iter: 19/39 Batch time: 0.1715
Phase: validation Epoch: 2/3 Iter: 20/39 Batch time: 0.1714
Phase: validation Epoch: 2/3 Iter: 21/39 Batch time: 0.1722
Phase: validation Epoch: 2/3 Iter: 22/39 Batch time: 0.1715
Phase: validation Epoch: 2/3 Iter: 23/39 Batch time: 0.1804
Phase: validation Epoch: 2/3 Iter: 24/39 Batch time: 0.1720
Phase: validation Epoch: 2/3 Iter: 25/39 Batch time: 0.1739
Phase: validation Epoch: 2/3 Iter: 26/39 Batch time: 0.1716
Phase: validation Epoch: 2/3 Iter: 27/39 Batch time: 0.1721
Phase: validation Epoch: 2/3 Iter: 28/39 Batch time: 0.1734
Phase: validation Epoch: 2/3 Iter: 29/39 Batch time: 0.1713
Phase: validation Epoch: 2/3 Iter: 30/39 Batch time: 0.1710
Phase: validation Epoch: 2/3 Iter: 31/39 Batch time: 0.1718
Phase: validation Epoch: 2/3 Iter: 32/39 Batch time: 0.1714
Phase: validation Epoch: 2/3 Iter: 33/39 Batch time: 0.1722
Phase: validation Epoch: 2/3 Iter: 34/39 Batch time: 0.1740
Phase: validation Epoch: 2/3 Iter: 35/39 Batch time: 0.1715
Phase: validation Epoch: 2/3 Iter: 36/39 Batch time: 0.1725
Phase: validation Epoch: 2/3 Iter: 37/39 Batch time: 0.1724
Phase: validation Epoch: 2/3 Iter: 38/39 Batch time: 0.1728
Phase: validation Epoch: 2/3 Iter: 39/39 Batch time: 0.0473
Phase: validation   Epoch: 2/3 Loss: 0.5389 Acc: 0.8235
Phase: train Epoch: 3/3 Iter: 1/62 Batch time: 0.2157
Phase: train Epoch: 3/3 Iter: 2/62 Batch time: 0.2134
Phase: train Epoch: 3/3 Iter: 3/62 Batch time: 0.2114
Phase: train Epoch: 3/3 Iter: 4/62 Batch time: 0.2126
Phase: train Epoch: 3/3 Iter: 5/62 Batch time: 0.2146
Phase: train Epoch: 3/3 Iter: 6/62 Batch time: 0.2135
Phase: train Epoch: 3/3 Iter: 7/62 Batch time: 0.2130
Phase: train Epoch: 3/3 Iter: 8/62 Batch time: 0.2130
Phase: train Epoch: 3/3 Iter: 9/62 Batch time: 0.2145
Phase: train Epoch: 3/3 Iter: 10/62 Batch time: 0.2161
Phase: train Epoch: 3/3 Iter: 11/62 Batch time: 0.2148
Phase: train Epoch: 3/3 Iter: 12/62 Batch time: 0.2162
Phase: train Epoch: 3/3 Iter: 13/62 Batch time: 0.2157
Phase: train Epoch: 3/3 Iter: 14/62 Batch time: 0.2138
Phase: train Epoch: 3/3 Iter: 15/62 Batch time: 0.2120
Phase: train Epoch: 3/3 Iter: 16/62 Batch time: 0.2142
Phase: train Epoch: 3/3 Iter: 17/62 Batch time: 0.2129
Phase: train Epoch: 3/3 Iter: 18/62 Batch time: 0.2122
Phase: train Epoch: 3/3 Iter: 19/62 Batch time: 0.2183
Phase: train Epoch: 3/3 Iter: 20/62 Batch time: 0.2182
Phase: train Epoch: 3/3 Iter: 21/62 Batch time: 0.2191
Phase: train Epoch: 3/3 Iter: 22/62 Batch time: 0.2156
Phase: train Epoch: 3/3 Iter: 23/62 Batch time: 0.2192
Phase: train Epoch: 3/3 Iter: 24/62 Batch time: 0.2132
Phase: train Epoch: 3/3 Iter: 25/62 Batch time: 0.2149
Phase: train Epoch: 3/3 Iter: 26/62 Batch time: 0.2130
Phase: train Epoch: 3/3 Iter: 27/62 Batch time: 0.2146
Phase: train Epoch: 3/3 Iter: 28/62 Batch time: 0.2152
Phase: train Epoch: 3/3 Iter: 29/62 Batch time: 0.2124
Phase: train Epoch: 3/3 Iter: 30/62 Batch time: 0.2123
Phase: train Epoch: 3/3 Iter: 31/62 Batch time: 0.2125
Phase: train Epoch: 3/3 Iter: 32/62 Batch time: 0.2188
Phase: train Epoch: 3/3 Iter: 33/62 Batch time: 0.2137
Phase: train Epoch: 3/3 Iter: 34/62 Batch time: 0.2146
Phase: train Epoch: 3/3 Iter: 35/62 Batch time: 0.2161
Phase: train Epoch: 3/3 Iter: 36/62 Batch time: 0.2149
Phase: train Epoch: 3/3 Iter: 37/62 Batch time: 0.2123
Phase: train Epoch: 3/3 Iter: 38/62 Batch time: 0.2126
Phase: train Epoch: 3/3 Iter: 39/62 Batch time: 0.2119
Phase: train Epoch: 3/3 Iter: 40/62 Batch time: 0.2132
Phase: train Epoch: 3/3 Iter: 41/62 Batch time: 0.2164
Phase: train Epoch: 3/3 Iter: 42/62 Batch time: 0.2122
Phase: train Epoch: 3/3 Iter: 43/62 Batch time: 0.2124
Phase: train Epoch: 3/3 Iter: 44/62 Batch time: 0.2137
Phase: train Epoch: 3/3 Iter: 45/62 Batch time: 0.2273
Phase: train Epoch: 3/3 Iter: 46/62 Batch time: 0.2230
Phase: train Epoch: 3/3 Iter: 47/62 Batch time: 0.2223
Phase: train Epoch: 3/3 Iter: 48/62 Batch time: 0.2226
Phase: train Epoch: 3/3 Iter: 49/62 Batch time: 0.2218
Phase: train Epoch: 3/3 Iter: 50/62 Batch time: 0.2215
Phase: train Epoch: 3/3 Iter: 51/62 Batch time: 0.2182
Phase: train Epoch: 3/3 Iter: 52/62 Batch time: 0.2173
Phase: train Epoch: 3/3 Iter: 53/62 Batch time: 0.2181
Phase: train Epoch: 3/3 Iter: 54/62 Batch time: 0.2273
Phase: train Epoch: 3/3 Iter: 55/62 Batch time: 0.2167
Phase: train Epoch: 3/3 Iter: 56/62 Batch time: 0.2159
Phase: train Epoch: 3/3 Iter: 57/62 Batch time: 0.2153
Phase: train Epoch: 3/3 Iter: 58/62 Batch time: 0.2157
Phase: train Epoch: 3/3 Iter: 59/62 Batch time: 0.2148
Phase: train Epoch: 3/3 Iter: 60/62 Batch time: 0.2146
Phase: train Epoch: 3/3 Iter: 61/62 Batch time: 0.2145
Phase: train Epoch: 3/3 Loss: 0.5652 Acc: 0.7418
Phase: validation Epoch: 3/3 Iter: 1/39 Batch time: 0.1914
Phase: validation Epoch: 3/3 Iter: 2/39 Batch time: 0.1779
Phase: validation Epoch: 3/3 Iter: 3/39 Batch time: 0.1724
Phase: validation Epoch: 3/3 Iter: 4/39 Batch time: 0.1728
Phase: validation Epoch: 3/3 Iter: 5/39 Batch time: 0.1731
Phase: validation Epoch: 3/3 Iter: 6/39 Batch time: 0.1725
Phase: validation Epoch: 3/3 Iter: 7/39 Batch time: 0.1732
Phase: validation Epoch: 3/3 Iter: 8/39 Batch time: 0.1723
Phase: validation Epoch: 3/3 Iter: 9/39 Batch time: 0.1726
Phase: validation Epoch: 3/3 Iter: 10/39 Batch time: 0.1726
Phase: validation Epoch: 3/3 Iter: 11/39 Batch time: 0.1729
Phase: validation Epoch: 3/3 Iter: 12/39 Batch time: 0.1724
Phase: validation Epoch: 3/3 Iter: 13/39 Batch time: 0.1754
Phase: validation Epoch: 3/3 Iter: 14/39 Batch time: 0.1723
Phase: validation Epoch: 3/3 Iter: 15/39 Batch time: 0.1721
Phase: validation Epoch: 3/3 Iter: 16/39 Batch time: 0.1722
Phase: validation Epoch: 3/3 Iter: 17/39 Batch time: 0.1721
Phase: validation Epoch: 3/3 Iter: 18/39 Batch time: 0.1772
Phase: validation Epoch: 3/3 Iter: 19/39 Batch time: 0.1726
Phase: validation Epoch: 3/3 Iter: 20/39 Batch time: 0.1747
Phase: validation Epoch: 3/3 Iter: 21/39 Batch time: 0.1738
Phase: validation Epoch: 3/3 Iter: 22/39 Batch time: 0.1716
Phase: validation Epoch: 3/3 Iter: 23/39 Batch time: 0.1723
Phase: validation Epoch: 3/3 Iter: 24/39 Batch time: 0.1744
Phase: validation Epoch: 3/3 Iter: 25/39 Batch time: 0.1712
Phase: validation Epoch: 3/3 Iter: 26/39 Batch time: 0.1711
Phase: validation Epoch: 3/3 Iter: 27/39 Batch time: 0.1709
Phase: validation Epoch: 3/3 Iter: 28/39 Batch time: 0.1711
Phase: validation Epoch: 3/3 Iter: 29/39 Batch time: 0.1757
Phase: validation Epoch: 3/3 Iter: 30/39 Batch time: 0.1856
Phase: validation Epoch: 3/3 Iter: 31/39 Batch time: 0.1724
Phase: validation Epoch: 3/3 Iter: 32/39 Batch time: 0.1717
Phase: validation Epoch: 3/3 Iter: 33/39 Batch time: 0.1706
Phase: validation Epoch: 3/3 Iter: 34/39 Batch time: 0.1716
Phase: validation Epoch: 3/3 Iter: 35/39 Batch time: 0.1715
Phase: validation Epoch: 3/3 Iter: 36/39 Batch time: 0.1708
Phase: validation Epoch: 3/3 Iter: 37/39 Batch time: 0.1712
Phase: validation Epoch: 3/3 Iter: 38/39 Batch time: 0.1726
Phase: validation Epoch: 3/3 Iter: 39/39 Batch time: 0.0481
Phase: validation   Epoch: 3/3 Loss: 0.4484 Acc: 0.8497
Training completed in 1m 5s
Best test loss: 0.4484 | Best test accuracy: 0.8497

Visualizing the model predictions

We first define a visualization function for a batch of test data.

def visualize_model(model, num_images=6, fig_name="Predictions"):
    images_so_far = 0
    _fig = plt.figure(fig_name)
    model.eval()
    with torch.no_grad():
        for _i, (inputs, labels) in enumerate(dataloaders["validation"]):
            inputs = inputs.to(device)
            labels = labels.to(device)
            outputs = model(inputs)
            _, preds = torch.max(outputs, 1)
            for j in range(inputs.size()[0]):
                images_so_far += 1
                ax = plt.subplot(num_images // 2, 2, images_so_far)
                ax.axis("off")
                ax.set_title("[{}]".format(class_names[preds[j]]))
                imshow(inputs.cpu().data[j])
                if images_so_far == num_images:
                    return

Finally, we can run the previous function to see a batch of images with the corresponding predictions.

visualize_model(model_hybrid, num_images=batch_size)
plt.show()
[ants], [ants], [ants], [ants]

References

[1] Andrea Mari, Thomas R. Bromley, Josh Izaac, Maria Schuld, and Nathan Killoran. Transfer learning in hybrid classical-quantum neural networks. arXiv:1912.08278 (2019).

[2] Rajat Raina, Alexis Battle, Honglak Lee, Benjamin Packer, and Andrew Y Ng. Self-taught learning: transfer learning from unlabeled data. Proceedings of the 24th International Conference on Machine Learning*, 759–766 (2007).

[3] Kaiming He, Xiangyu Zhang, Shaoqing ren and Jian Sun. Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 770-778 (2016).

[4] Ville Bergholm, Josh Izaac, Maria Schuld, Christian Gogolin, Carsten Blank, Keri McKiernan, and Nathan Killoran. PennyLane: Automatic differentiation of hybrid quantum-classical computations. arXiv:1811.04968 (2018).

About the author

Total running time of the script: (1 minutes 6.651 seconds)

Andrea Mari

Andrea Mari

Andrea obtained a PhD in quantum information theory from the University of Potsdam (Germany). He worked as a postdoc at Scuola Normale Superiore (Pisa, Italy) and as a remote researcher at Xanadu. Since 2020 is a Member of Technical Staff at Unitary ...

Total running time of the script: (1 minutes 6.651 seconds)