- Compilation/
Parity Matrix Intermediate Representation
Parity Matrix Intermediate Representation
The parity matrix is an intermediate representation to efficiently describe the action of CNOT circuits. They are utilized in CNOT routing algorithms like, e.g., RowCol.
Inputs
- CNOT circuit with n qubits
Outputs
- n \times n binary matrix P with P_{ij} \in \{0, 1\}
Example
Consider the following CNOT circuit,
x_0: ────╭●───────╭X─╭●─┤ x_0 ⊕ x_3 x_1: ────│──╭X────│──│──┤ x_0 ⊕ x_1 ⊕ x_2 ⊕ x_3 x_2: ─╭X─╰X─╰●─╭X─│──╰X─┤ x_2 ⊕ x_3 x_3: ─╰●───────╰●─╰●────┤ x_3
and its corresponding parity matrix
The rows correspond to the input qubits and tell us how they are transformed. E.g., the first row tells us that qubit x_0 is transformed to x_0 \oplus x_3.
Very easy-to-read examples are SWAP circuits that just permute qubits, as the corresponding parity matrix is a permutation matrix.
x_0: ─╭SWAP─────────────┤ x_1 x_1: ─╰SWAP─╭SWAP───────┤ x_2 x_2: ───────╰SWAP─╭SWAP─┤ x_3 x_3: ─────────────╰SWAP─┤ x_0
Another typical example is a CNOT ladder, which continuously adds parities to lower qubits.
x_0: ─╭●───────┤ x_0 x_1: ─╰X─╭●────┤ x_0 ⊕ x_1 x_2: ────╰X─╭●─┤ x_0 ⊕ x_1 ⊕ x_2 x_3: ───────╰X─┤ x_0 ⊕ x_1 ⊕ x_2 ⊕ x_3
Typical usage
Parity matrices are utilized in CNOT routing algorithms like RowCol.
References
[1] "CNOT circuit extraction for topologically-constrained quantum memories", Aleks Kissinger, Arianne Meijer-van de Griend, arXiv:1904.00633, 2019
[2] "Quantum circuit optimizations for NISQ architectures", Beatrice Nash, Vlad Gheorghiu, Michele Mosca, arXiv:1904.01972, 2019
[3] "Optimization of CNOT circuits on limited connectivity architecture", Bujiao Wu, Xiaoyu He, Shuai Yang, Lifu Shou, Guojing Tian, Jialin Zhang, Xiaoming Sun, arXiv:1910.14478, 2019
[4] "Dynamic Qubit Routing with CNOT Circuit Synthesis for Quantum Compilation", Arianne Meijer-van de Griend, Sarah Meng Li, arXiv:2205.00724, 2022
[5] "Global Synthesis of CNOT Circuits with Holes", Ewan Murphy, Aleks Kissinger, arXiv:2308.16496, 2023
Cite this page
@misc{PennyLane-ParityMatrix, title={Parity Matrix Intermediate Representation}, howpublished={\url{https://pennylane.ai/compilation/parity-matrix-intermediate-representation}}, year={2025} }
Page author(s)
Korbinian Kottmann
Quantum simulation & open source software